Spaces:
Build error
Build error
File size: 36,823 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import math
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import Linear
from mmengine.model import constant_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.losses import QualityFocalLoss
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh
from mmdet.utils import InstanceList, reduce_mean
from ..layers import inverse_sigmoid
from .atss_vlfusion_head import convert_grounding_to_cls_scores
from .dino_head import DINOHead
class ContrastiveEmbed(nn.Module):
"""text visual ContrastiveEmbed layer.
Args:
max_text_len (int, optional): Maximum length of text.
log_scale (Optional[Union[str, float]]): The initial value of a
learnable parameter to multiply with the similarity
matrix to normalize the output. Defaults to 0.0.
- If set to 'auto', the similarity matrix will be normalized by
a fixed value ``sqrt(d_c)`` where ``d_c`` is the channel number.
- If set to 'none' or ``None``, there is no normalization applied.
- If set to a float number, the similarity matrix will be multiplied
by ``exp(log_scale)``, where ``log_scale`` is learnable.
bias (bool, optional): Whether to add bias to the output.
If set to ``True``, a learnable bias that is initialized as -4.6
will be added to the output. Useful when training from scratch.
Defaults to False.
"""
def __init__(self,
max_text_len: int = 256,
log_scale: Optional[Union[str, float]] = None,
bias: bool = False):
super().__init__()
self.max_text_len = max_text_len
self.log_scale = log_scale
if isinstance(log_scale, float):
self.log_scale = nn.Parameter(
torch.Tensor([float(log_scale)]), requires_grad=True)
elif log_scale not in ['auto', 'none', None]:
raise ValueError(f'log_scale should be one of '
f'"auto", "none", None, but got {log_scale}')
self.bias = None
if bias:
bias_value = -math.log((1 - 0.01) / 0.01)
self.bias = nn.Parameter(
torch.Tensor([bias_value]), requires_grad=True)
def forward(self, visual_feat: Tensor, text_feat: Tensor,
text_token_mask: Tensor) -> Tensor:
"""Forward function.
Args:
visual_feat (Tensor): Visual features.
text_feat (Tensor): Text features.
text_token_mask (Tensor): A mask used for text feats.
Returns:
Tensor: Classification score.
"""
res = visual_feat @ text_feat.transpose(-1, -2)
if isinstance(self.log_scale, nn.Parameter):
res = res * self.log_scale.exp()
elif self.log_scale == 'auto':
# NOTE: similar to the normalizer in self-attention
res = res / math.sqrt(visual_feat.shape[-1])
if self.bias is not None:
res = res + self.bias
res.masked_fill_(~text_token_mask[:, None, :], float('-inf'))
new_res = torch.full((*res.shape[:-1], self.max_text_len),
float('-inf'),
device=res.device)
new_res[..., :res.shape[-1]] = res
return new_res
@MODELS.register_module()
class GroundingDINOHead(DINOHead):
"""Head of the Grounding DINO: Marrying DINO with Grounded Pre-Training for
Open-Set Object Detection.
Args:
contrastive_cfg (dict, optional): Contrastive config that contains
keys like ``max_text_len``. Defaults to dict(max_text_len=256).
"""
def __init__(self, contrastive_cfg=dict(max_text_len=256), **kwargs):
self.contrastive_cfg = contrastive_cfg
self.max_text_len = contrastive_cfg.get('max_text_len', 256)
super().__init__(**kwargs)
def _init_layers(self) -> None:
"""Initialize classification branch and regression branch of head."""
fc_cls = ContrastiveEmbed(**self.contrastive_cfg)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.embed_dims, 4))
reg_branch = nn.Sequential(*reg_branch)
# NOTE: due to the fc_cls is a contrastive embedding and don't
# have any trainable parameters,we do not need to copy it.
if self.share_pred_layer:
self.cls_branches = nn.ModuleList(
[fc_cls for _ in range(self.num_pred_layer)])
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(self.num_pred_layer)])
else:
self.cls_branches = nn.ModuleList(
[copy.deepcopy(fc_cls) for _ in range(self.num_pred_layer)])
self.reg_branches = nn.ModuleList([
copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer)
])
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
if self.as_two_stage:
for m in self.reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
def _get_targets_single(self, cls_score: Tensor, bbox_pred: Tensor,
gt_instances: InstanceData,
img_meta: dict) -> tuple:
"""Compute regression and classification targets for one image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_score (Tensor): Box score logits from a single decoder layer
for one image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
for one image, with normalized coordinate (cx, cy, w, h) and
shape [num_queries, 4].
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
img_h, img_w = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
num_bboxes = bbox_pred.size(0)
# convert bbox_pred from xywh, normalized to xyxy, unnormalized
bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
bbox_pred = bbox_pred * factor
pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred)
# assigner and sampler
assign_result = self.assigner.assign(
pred_instances=pred_instances,
gt_instances=gt_instances,
img_meta=img_meta)
gt_bboxes = gt_instances.bboxes
pos_inds = torch.nonzero(
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique()
neg_inds = torch.nonzero(
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique()
pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :]
# Major changes. The labels are 0-1 binary labels for each bbox
# and text tokens.
labels = gt_bboxes.new_full((num_bboxes, self.max_text_len),
0,
dtype=torch.float32)
labels[pos_inds] = gt_instances.positive_maps[pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_bboxes)
# bbox targets
bbox_targets = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
bbox_weights = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
bbox_weights[pos_inds] = 1.0
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
pos_gt_bboxes_normalized = pos_gt_bboxes / factor
pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
bbox_targets[pos_inds] = pos_gt_bboxes_targets
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
def forward(
self,
hidden_states: Tensor,
references: List[Tensor],
memory_text: Tensor,
text_token_mask: Tensor,
) -> Tuple[Tensor]:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (List[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
memory_text (Tensor): Memory text. It has shape (bs, len_text,
text_embed_dims).
text_token_mask (Tensor): Text token mask. It has shape (bs,
len_text).
Returns:
tuple[Tensor]: results of head containing the following tensor.
- all_layers_outputs_classes (Tensor): Outputs from the
classification head, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the
regression head with normalized coordinate format (cx, cy, w,
h), has shape (num_decoder_layers, bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
"""
all_layers_outputs_classes = []
all_layers_outputs_coords = []
for layer_id in range(hidden_states.shape[0]):
reference = inverse_sigmoid(references[layer_id])
# NOTE The last reference will not be used.
hidden_state = hidden_states[layer_id]
outputs_class = self.cls_branches[layer_id](hidden_state,
memory_text,
text_token_mask)
tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
if reference.shape[-1] == 4:
# When `layer` is 0 and `as_two_stage` of the detector
# is `True`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `True`.
tmp_reg_preds += reference
else:
# When `layer` is 0 and `as_two_stage` of the detector
# is `False`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `False`.
assert reference.shape[-1] == 2
tmp_reg_preds[..., :2] += reference
outputs_coord = tmp_reg_preds.sigmoid()
all_layers_outputs_classes.append(outputs_class)
all_layers_outputs_coords.append(outputs_coord)
all_layers_outputs_classes = torch.stack(all_layers_outputs_classes)
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)
return all_layers_outputs_classes, all_layers_outputs_coords
def predict(self,
hidden_states: Tensor,
references: List[Tensor],
memory_text: Tensor,
text_token_mask: Tensor,
batch_data_samples: SampleList,
rescale: bool = True) -> InstanceList:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (List[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
memory_text (Tensor): Memory text. It has shape (bs, len_text,
text_embed_dims).
text_token_mask (Tensor): Text token mask. It has shape (bs,
len_text).
batch_data_samples (SampleList): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): If `True`, return boxes in original
image space. Defaults to `True`.
Returns:
InstanceList: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
batch_token_positive_maps = [
data_samples.token_positive_map
for data_samples in batch_data_samples
]
outs = self(hidden_states, references, memory_text, text_token_mask)
predictions = self.predict_by_feat(
*outs,
batch_img_metas=batch_img_metas,
batch_token_positive_maps=batch_token_positive_maps,
rescale=rescale)
return predictions
def predict_by_feat(self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
batch_img_metas: List[Dict],
batch_token_positive_maps: Optional[List[dict]] = None,
rescale: bool = False) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs, num_queries,
cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries,
4) with the last dimension arranged as (cx, cy, w, h).
batch_img_metas (List[Dict]): _description_
batch_token_positive_maps (list[dict], Optional): Batch token
positive map. Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
cls_scores = all_layers_cls_scores[-1]
bbox_preds = all_layers_bbox_preds[-1]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id]
bbox_pred = bbox_preds[img_id]
img_meta = batch_img_metas[img_id]
token_positive_maps = batch_token_positive_maps[img_id]
results = self._predict_by_feat_single(cls_score, bbox_pred,
token_positive_maps,
img_meta, rescale)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
cls_score: Tensor,
bbox_pred: Tensor,
token_positive_maps: dict,
img_meta: dict,
rescale: bool = True) -> InstanceData:
"""Transform a single image's features extracted from the head into
bbox results.
Args:
cls_score (Tensor): Box score logits from the last decoder layer
for each image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
for each image, with coordinate format (cx, cy, w, h) and
shape [num_queries, 4].
token_positive_maps (dict): Token positive map.
img_meta (dict): Image meta info.
rescale (bool, optional): If True, return boxes in original image
space. Default True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(cls_score) == len(bbox_pred) # num_queries
max_per_img = self.test_cfg.get('max_per_img', len(cls_score))
img_shape = img_meta['img_shape']
cls_score = convert_grounding_to_cls_scores(
logits=cls_score.sigmoid()[None],
positive_maps=[token_positive_maps])[0]
scores, indexes = cls_score.view(-1).topk(max_per_img)
num_classes = cls_score.shape[-1]
det_labels = indexes % num_classes
bbox_index = indexes // num_classes
bbox_pred = bbox_pred[bbox_index]
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
if rescale:
assert img_meta.get('scale_factor') is not None
det_bboxes /= det_bboxes.new_tensor(
img_meta['scale_factor']).repeat((1, 2))
results = InstanceData()
results.bboxes = det_bboxes
results.scores = scores
results.labels = det_labels
return results
def loss(self, hidden_states: Tensor, references: List[Tensor],
memory_text: Tensor, text_token_mask: Tensor,
enc_outputs_class: Tensor, enc_outputs_coord: Tensor,
batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries` and `num_matching_queries` when
`self.training` is `True`, else `num_matching_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries_total, 4) and each `inter_reference` has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
memory_text (Tensor): Memory text. It has shape (bs, len_text,
text_embed_dims).
enc_outputs_class (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_outputs_coord (Tensor): The proposal generate from the
encode feature map, has shape (bs, num_feat_points, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states, references, memory_text, text_token_mask)
self.text_masks = text_token_mask
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
batch_gt_instances, batch_img_metas, dn_meta)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict]) -> Tuple[Tensor]:
"""Loss function for outputs from a single decoder layer of a single
feature level.
Args:
cls_scores (Tensor): Box score logits from a single decoder layer
for all images, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
for all images, with normalized coordinate (cx, cy, w, h) and
shape (bs, num_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
num_imgs = cls_scores.size(0)
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
with torch.no_grad():
cls_reg_targets = self.get_targets(cls_scores_list,
bbox_preds_list,
batch_gt_instances,
batch_img_metas)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.stack(labels_list, 0)
label_weights = torch.stack(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# ===== this change =====
# Loss is not computed for the padded regions of the text.
assert (self.text_masks.dim() == 2)
text_masks = self.text_masks.new_zeros(
(self.text_masks.size(0), self.max_text_len))
text_masks[:, :self.text_masks.size(1)] = self.text_masks
text_mask = (text_masks > 0).unsqueeze(1)
text_mask = text_mask.repeat(1, cls_scores.size(1), 1)
cls_scores = torch.masked_select(cls_scores, text_mask).contiguous()
labels = torch.masked_select(labels, text_mask)
label_weights = label_weights[...,
None].repeat(1, 1, text_mask.size(-1))
label_weights = torch.masked_select(label_weights, text_mask)
# classification loss
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
if isinstance(self.loss_cls, QualityFocalLoss):
raise NotImplementedError(
'QualityFocalLoss for GroundingDINOHead is not supported yet.')
else:
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds):
img_h, img_w, = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors, 0)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def _loss_dn_single(self, dn_cls_scores: Tensor, dn_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int]) -> Tuple[Tensor]:
"""Denoising loss for outputs from a single decoder layer.
Args:
dn_cls_scores (Tensor): Classification scores of a single decoder
layer in denoising part, has shape (bs, num_denoising_queries,
cls_out_channels).
dn_bbox_preds (Tensor): Regression outputs of a single decoder
layer in denoising part. Each is a 4D-tensor with normalized
coordinate format (cx, cy, w, h) and has shape
(bs, num_denoising_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
cls_reg_targets = self.get_dn_targets(batch_gt_instances,
batch_img_metas, dn_meta)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.stack(labels_list, 0)
label_weights = torch.stack(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# ===== this change =====
# Loss is not computed for the padded regions of the text.
assert (self.text_masks.dim() == 2)
text_masks = self.text_masks.new_zeros(
(self.text_masks.size(0), self.max_text_len))
text_masks[:, :self.text_masks.size(1)] = self.text_masks
text_mask = (text_masks > 0).unsqueeze(1)
text_mask = text_mask.repeat(1, dn_cls_scores.size(1), 1)
cls_scores = torch.masked_select(dn_cls_scores, text_mask).contiguous()
labels = torch.masked_select(labels, text_mask)
label_weights = label_weights[...,
None].repeat(1, 1, text_mask.size(-1))
label_weights = torch.masked_select(label_weights, text_mask)
# =======================
# classification loss
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = \
num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
if len(cls_scores) > 0:
if isinstance(self.loss_cls, QualityFocalLoss):
raise NotImplementedError('QualityFocalLoss is not supported')
else:
loss_cls = self.loss_cls(
cls_scores,
labels,
label_weights,
avg_factor=cls_avg_factor)
else:
loss_cls = torch.zeros(
1, dtype=cls_scores.dtype, device=cls_scores.device)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds):
img_h, img_w = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = dn_bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def _get_dn_targets_single(self, gt_instances: InstanceData,
img_meta: dict, dn_meta: Dict[str,
int]) -> tuple:
"""Get targets in denoising part for one image.
Args:
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
num_groups = dn_meta['num_denoising_groups']
num_denoising_queries = dn_meta['num_denoising_queries']
num_queries_each_group = int(num_denoising_queries / num_groups)
device = gt_bboxes.device
if len(gt_labels) > 0:
t = torch.arange(len(gt_labels), dtype=torch.long, device=device)
t = t.unsqueeze(0).repeat(num_groups, 1)
pos_assigned_gt_inds = t.flatten()
pos_inds = torch.arange(
num_groups, dtype=torch.long, device=device)
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t
pos_inds = pos_inds.flatten()
else:
pos_inds = pos_assigned_gt_inds = \
gt_bboxes.new_tensor([], dtype=torch.long)
neg_inds = pos_inds + num_queries_each_group // 2
# label targets
# this change
labels = gt_bboxes.new_full((num_denoising_queries, self.max_text_len),
0,
dtype=torch.float32)
labels[pos_inds] = gt_instances.positive_maps[pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_denoising_queries)
# bbox targets
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device)
bbox_weights[pos_inds] = 1.0
img_h, img_w = img_meta['img_shape']
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
gt_bboxes_normalized = gt_bboxes / factor
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized)
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1])
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
|