Spaces:
Build error
Build error
File size: 26,227 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
from typing import Dict, List, Tuple
import torch
from mmengine.model import bias_init_with_prob, constant_init
from torch import Tensor, nn
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..layers import inverse_sigmoid
from ..losses import DDQAuxLoss
from ..utils import multi_apply
from .dino_head import DINOHead
@MODELS.register_module()
class DDQDETRHead(DINOHead):
r"""Head of DDQDETR: Dense Distinct Query for
End-to-End Object Detection.
Code is modified from the `official github repo
<https://github.com/jshilong/DDQ>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2303.12776>`_ .
Args:
aux_num_pos (int): Number of positive targets assigned to a
perdicted object. Defaults to 4.
"""
def __init__(self, *args, aux_num_pos=4, **kwargs):
super(DDQDETRHead, self).__init__(*args, **kwargs)
self.aux_loss_for_dense = DDQAuxLoss(
train_cfg=dict(
assigner=dict(type='TopkHungarianAssigner', topk=aux_num_pos),
alpha=1,
beta=6))
def _init_layers(self) -> None:
"""Initialize classification branch and regression branch of aux head
for dense queries."""
super(DDQDETRHead, self)._init_layers()
# If decoder `num_layers` = 6 and `as_two_stage` = True, then:
# 1) 6 main heads are required for
# each decoder output of distinct queries.
# 2) 1 main head is required for `output_memory` of distinct queries.
# 3) 1 aux head is required for `output_memory` of dense queries,
# which is done by code below this comment.
# So 8 heads are required in sum.
# aux head for dense queries on encoder feature map
self.cls_branches.append(copy.deepcopy(self.cls_branches[-1]))
self.reg_branches.append(copy.deepcopy(self.reg_branches[-1]))
# If decoder `num_layers` = 6 and `as_two_stage` = True, then:
# 6 aux heads are required for each decoder output of dense queries.
# So 8 + 6 = 14 heads and heads are requires in sum.
# self.num_pred_layer is 7
# aux head for dense queries in decoder
self.aux_cls_branches = nn.ModuleList([
copy.deepcopy(self.cls_branches[-1])
for _ in range(self.num_pred_layer - 1)
])
self.aux_reg_branches = nn.ModuleList([
copy.deepcopy(self.reg_branches[-1])
for _ in range(self.num_pred_layer - 1)
])
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.aux_cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
for m in self.reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
for m in self.aux_reg_branches:
constant_init(m[-1], 0, bias=0)
for m in self.aux_reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
def forward(self, hidden_states: Tensor,
references: List[Tensor]) -> Tuple[Tensor]:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries`, `num_queries` and `num_dense_queries`
when `self.training` is `True`, else `num_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). Each reference has shape (bs,
num_queries_total, 4) with the last dimension arranged as
(cx, cy, w, h).
Returns:
tuple[Tensor]: results of head containing the following tensors.
- all_layers_outputs_classes (Tensor): Outputs from the
classification head, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the
regression head with normalized coordinate format (cx, cy, w,
h), has shape (num_decoder_layers, bs, num_queries_total, 4)
with the last dimension arranged as (cx, cy, w, h).
"""
all_layers_outputs_classes = []
all_layers_outputs_coords = []
if self.training:
num_dense = self.cache_dict['num_dense_queries']
for layer_id in range(hidden_states.shape[0]):
reference = inverse_sigmoid(references[layer_id])
hidden_state = hidden_states[layer_id]
if self.training:
dense_hidden_state = hidden_state[:, -num_dense:]
hidden_state = hidden_state[:, :-num_dense]
outputs_class = self.cls_branches[layer_id](hidden_state)
tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
if self.training:
dense_outputs_class = self.aux_cls_branches[layer_id](
dense_hidden_state)
dense_tmp_reg_preds = self.aux_reg_branches[layer_id](
dense_hidden_state)
outputs_class = torch.cat([outputs_class, dense_outputs_class],
dim=1)
tmp_reg_preds = torch.cat([tmp_reg_preds, dense_tmp_reg_preds],
dim=1)
if reference.shape[-1] == 4:
tmp_reg_preds += reference
else:
assert reference.shape[-1] == 2
tmp_reg_preds[..., :2] += reference
outputs_coord = tmp_reg_preds.sigmoid()
all_layers_outputs_classes.append(outputs_class)
all_layers_outputs_coords.append(outputs_coord)
all_layers_outputs_classes = torch.stack(all_layers_outputs_classes)
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)
return all_layers_outputs_classes, all_layers_outputs_coords
def loss(self,
hidden_states: Tensor,
references: List[Tensor],
enc_outputs_class: Tensor,
enc_outputs_coord: Tensor,
batch_data_samples: SampleList,
dn_meta: Dict[str, int],
aux_enc_outputs_class=None,
aux_enc_outputs_coord=None) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries`, `num_queries` and `num_dense_queries`
when `self.training` is `True`, else `num_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). Each reference has shape (bs,
num_queries_total, 4) with the last dimension arranged as
(cx, cy, w, h).
enc_outputs_class (Tensor): The top k classification score of
each point on encoder feature map, has shape (bs, num_queries,
cls_out_channels).
enc_outputs_coord (Tensor): The proposal generated from points
with top k score, has shape (bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
aux_enc_outputs_class (Tensor): The `dense_topk` classification
score of each point on encoder feature map, has shape (bs,
num_dense_queries, cls_out_channels).
It is `None` when `self.training` is `False`.
aux_enc_outputs_coord (Tensor): The proposal generated from points
with `dense_topk` score, has shape (bs, num_dense_queries, 4)
with the last dimension arranged as (cx, cy, w, h).
It is `None` when `self.training` is `False`.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states, references)
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
batch_gt_instances, batch_img_metas, dn_meta)
losses = self.loss_by_feat(*loss_inputs)
aux_enc_outputs_coord = bbox_cxcywh_to_xyxy(aux_enc_outputs_coord)
aux_enc_outputs_coord_list = []
for img_id in range(len(aux_enc_outputs_coord)):
det_bboxes = aux_enc_outputs_coord[img_id]
img_shape = batch_img_metas[img_id]['img_shape']
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
aux_enc_outputs_coord_list.append(det_bboxes)
aux_enc_outputs_coord = torch.stack(aux_enc_outputs_coord_list)
aux_loss = self.aux_loss_for_dense.loss(
aux_enc_outputs_class.sigmoid(), aux_enc_outputs_coord,
[item.bboxes for item in batch_gt_instances],
[item.labels for item in batch_gt_instances], batch_img_metas)
for k, v in aux_loss.items():
losses[f'aux_enc_{k}'] = v
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
enc_cls_scores: Tensor,
enc_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor): Bbox coordinates of all decoder
layers. Each has shape (num_decoder_layers, bs,
num_queries_total, 4) with normalized coordinate format
(cx, cy, w, h).
enc_cls_scores (Tensor): The top k score of each point on
encoder feature map, has shape (bs, num_queries,
cls_out_channels).
enc_bbox_preds (Tensor): The proposal generated from points
with top k score, has shape (bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \
self.split_outputs(
all_layers_cls_scores, all_layers_bbox_preds, dn_meta)
num_dense_queries = dn_meta['num_dense_queries']
num_layer = all_layers_matching_bbox_preds.size(0)
dense_all_layers_matching_cls_scores = all_layers_matching_cls_scores[:, :, # noqa: E501
-num_dense_queries:] # noqa: E501
dense_all_layers_matching_bbox_preds = all_layers_matching_bbox_preds[:, :, # noqa: E501
-num_dense_queries:] # noqa: E501
all_layers_matching_cls_scores = all_layers_matching_cls_scores[:, :, : # noqa: E501
-num_dense_queries] # noqa: E501
all_layers_matching_bbox_preds = all_layers_matching_bbox_preds[:, :, : # noqa: E501
-num_dense_queries] # noqa: E501
loss_dict = self.loss_for_distinct_queries(
all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
batch_gt_instances, batch_img_metas, batch_gt_instances_ignore)
if enc_cls_scores is not None:
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
self.loss_by_feat_single(
enc_cls_scores, enc_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
loss_dict['enc_loss_iou'] = enc_losses_iou
if all_layers_denoising_cls_scores is not None:
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn(
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
dn_meta=dn_meta)
loss_dict['dn_loss_cls'] = dn_losses_cls[-1]
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1]
loss_dict['dn_loss_iou'] = dn_losses_iou[-1]
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1],
dn_losses_iou[:-1])):
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i
for l_id in range(num_layer):
cls_scores = dense_all_layers_matching_cls_scores[l_id].sigmoid()
bbox_preds = dense_all_layers_matching_bbox_preds[l_id]
bbox_preds = bbox_cxcywh_to_xyxy(bbox_preds)
bbox_preds_list = []
for img_id in range(len(bbox_preds)):
det_bboxes = bbox_preds[img_id]
img_shape = batch_img_metas[img_id]['img_shape']
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
bbox_preds_list.append(det_bboxes)
bbox_preds = torch.stack(bbox_preds_list)
aux_loss = self.aux_loss_for_dense.loss(
cls_scores, bbox_preds,
[item.bboxes for item in batch_gt_instances],
[item.labels for item in batch_gt_instances], batch_img_metas)
for k, v in aux_loss.items():
loss_dict[f'{l_id}_aux_{k}'] = v
return loss_dict
def loss_for_distinct_queries(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Calculate the loss of distinct queries, that is, excluding denoising
and dense queries. Only select the distinct queries in decoder for
loss.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor): Bbox coordinates of all decoder
layers. It has shape (num_decoder_layers, bs,
num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert batch_gt_instances_ignore is None, \
f'{self.__class__.__name__} only supports ' \
'for batch_gt_instances_ignore setting to None.'
losses_cls, losses_bbox, losses_iou = multi_apply(
self._loss_for_distinct_queries_single,
all_layers_cls_scores,
all_layers_bbox_preds,
[i for i in range(len(all_layers_bbox_preds))],
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict = dict()
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
loss_dict['loss_iou'] = losses_iou[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i, loss_iou_i in \
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
num_dec_layer += 1
return loss_dict
def _loss_for_distinct_queries_single(self, cls_scores, bbox_preds, l_id,
batch_gt_instances, batch_img_metas):
"""Calculate the loss for outputs from a single decoder layer of
distinct queries, that is, excluding denoising and dense queries. Only
select the distinct queries in decoder for loss.
Args:
cls_scores (Tensor): Classification scores of a single
decoder layer, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor): Bbox coordinates of a single decoder
layer. It has shape (bs, num_queries, 4) with the last
dimension arranged as (cx, cy, w, h).
l_id (int): Decoder layer index for these outputs.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
num_imgs = cls_scores.size(0)
if 0 < l_id:
batch_mask = [
self.cache_dict['distinct_query_mask'][l_id - 1][
img_id * self.cache_dict['num_heads']][0]
for img_id in range(num_imgs)
]
else:
batch_mask = [
torch.ones(len(cls_scores[i]),
device=cls_scores.device).bool()
for i in range(num_imgs)
]
# only select the distinct queries in decoder for loss
cls_scores_list = [
cls_scores[i][batch_mask[i]] for i in range(num_imgs)
]
bbox_preds_list = [
bbox_preds[i][batch_mask[i]] for i in range(num_imgs)
]
cls_scores = torch.cat(cls_scores_list)
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
batch_gt_instances, batch_img_metas)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds_list):
img_h, img_w, = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors, 0)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = torch.cat(bbox_preds_list)
bbox_preds = bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def predict_by_feat(self,
layer_cls_scores: Tensor,
layer_bbox_preds: Tensor,
batch_img_metas: List[dict],
rescale: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
layer_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
layer_bbox_preds (Tensor): Bbox coordinates of all decoder layers.
Each has shape (num_decoder_layers, bs, num_queries, 4)
with normalized coordinate format (cx, cy, w, h).
batch_img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If `True`, return boxes in original
image space. Default `False`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
cls_scores = layer_cls_scores[-1]
bbox_preds = layer_bbox_preds[-1]
num_imgs = cls_scores.size(0)
# -1 is last layer input query mask
batch_mask = [
self.cache_dict['distinct_query_mask'][-1][
img_id * self.cache_dict['num_heads']][0]
for img_id in range(num_imgs)
]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id][batch_mask[img_id]]
bbox_pred = bbox_preds[img_id][batch_mask[img_id]]
img_meta = batch_img_metas[img_id]
results = self._predict_by_feat_single(cls_score, bbox_pred,
img_meta, rescale)
result_list.append(results)
return result_list
|