File size: 13,411 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import warnings
from pathlib import Path
from typing import Optional, Sequence, Union

import numpy as np
import torch
import torch.nn as nn
from mmcv.ops import RoIPool
from mmcv.transforms import Compose
from mmengine.config import Config
from mmengine.dataset import default_collate
from mmengine.model.utils import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.runner import load_checkpoint

from mmdet.registry import DATASETS
from mmdet.utils import ConfigType
from ..evaluation import get_classes
from ..registry import MODELS
from ..structures import DetDataSample, SampleList
from ..utils import get_test_pipeline_cfg


def init_detector(
    config: Union[str, Path, Config],
    checkpoint: Optional[str] = None,
    palette: str = 'none',
    device: str = 'cuda:0',
    cfg_options: Optional[dict] = None,
) -> nn.Module:
    """Initialize a detector from config file.

    Args:
        config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
            :obj:`Path`, or the config object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        palette (str): Color palette used for visualization. If palette
            is stored in checkpoint, use checkpoint's palette first, otherwise
            use externally passed palette. Currently, supports 'coco', 'voc',
            'citys' and 'random'. Defaults to none.
        device (str): The device where the anchors will be put on.
            Defaults to cuda:0.
        cfg_options (dict, optional): Options to override some settings in
            the used config.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, (str, Path)):
        config = Config.fromfile(config)
    elif not isinstance(config, Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if cfg_options is not None:
        config.merge_from_dict(cfg_options)
    elif 'init_cfg' in config.model.backbone:
        config.model.backbone.init_cfg = None

    scope = config.get('default_scope', 'mmdet')
    if scope is not None:
        init_default_scope(config.get('default_scope', 'mmdet'))

    model = MODELS.build(config.model)
    model = revert_sync_batchnorm(model)
    if checkpoint is None:
        warnings.simplefilter('once')
        warnings.warn('checkpoint is None, use COCO classes by default.')
        model.dataset_meta = {'classes': get_classes('coco')}
    else:
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        # Weights converted from elsewhere may not have meta fields.
        checkpoint_meta = checkpoint.get('meta', {})

        # save the dataset_meta in the model for convenience
        if 'dataset_meta' in checkpoint_meta:
            # mmdet 3.x, all keys should be lowercase
            model.dataset_meta = {
                k.lower(): v
                for k, v in checkpoint_meta['dataset_meta'].items()
            }
        elif 'CLASSES' in checkpoint_meta:
            # < mmdet 3.x
            classes = checkpoint_meta['CLASSES']
            model.dataset_meta = {'classes': classes}
        else:
            warnings.simplefilter('once')
            warnings.warn(
                'dataset_meta or class names are not saved in the '
                'checkpoint\'s meta data, use COCO classes by default.')
            model.dataset_meta = {'classes': get_classes('coco')}

    # Priority:  args.palette -> config -> checkpoint
    if palette != 'none':
        model.dataset_meta['palette'] = palette
    else:
        test_dataset_cfg = copy.deepcopy(config.test_dataloader.dataset)
        # lazy init. We only need the metainfo.
        test_dataset_cfg['lazy_init'] = True
        metainfo = DATASETS.build(test_dataset_cfg).metainfo
        cfg_palette = metainfo.get('palette', None)
        if cfg_palette is not None:
            model.dataset_meta['palette'] = cfg_palette
        else:
            if 'palette' not in model.dataset_meta:
                warnings.warn(
                    'palette does not exist, random is used by default. '
                    'You can also set the palette to customize.')
                model.dataset_meta['palette'] = 'random'

    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


ImagesType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]


def inference_detector(
    model: nn.Module,
    imgs: ImagesType,
    test_pipeline: Optional[Compose] = None,
    text_prompt: Optional[str] = None,
    custom_entities: bool = False,
) -> Union[DetDataSample, SampleList]:
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str, ndarray, Sequence[str/ndarray]):
           Either image files or loaded images.
        test_pipeline (:obj:`Compose`): Test pipeline.

    Returns:
        :obj:`DetDataSample` or list[:obj:`DetDataSample`]:
        If imgs is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
    """

    if isinstance(imgs, (list, tuple)):
        is_batch = True
    else:
        imgs = [imgs]
        is_batch = False

    cfg = model.cfg

    if test_pipeline is None:
        cfg = cfg.copy()
        test_pipeline = get_test_pipeline_cfg(cfg)
        if isinstance(imgs[0], np.ndarray):
            # Calling this method across libraries will result
            # in module unregistered error if not prefixed with mmdet.
            test_pipeline[0].type = 'mmdet.LoadImageFromNDArray'

        test_pipeline = Compose(test_pipeline)

    if model.data_preprocessor.device.type == 'cpu':
        for m in model.modules():
            assert not isinstance(
                m, RoIPool
            ), 'CPU inference with RoIPool is not supported currently.'

    result_list = []
    for i, img in enumerate(imgs):
        # prepare data
        if isinstance(img, np.ndarray):
            # TODO: remove img_id.
            data_ = dict(img=img, img_id=0)
        else:
            # TODO: remove img_id.
            data_ = dict(img_path=img, img_id=0)

        if text_prompt:
            data_['text'] = text_prompt
            data_['custom_entities'] = custom_entities

        # build the data pipeline
        data_ = test_pipeline(data_)

        data_['inputs'] = [data_['inputs']]
        data_['data_samples'] = [data_['data_samples']]

        # forward the model
        with torch.no_grad():
            results = model.test_step(data_)[0]

        result_list.append(results)

    if not is_batch:
        return result_list[0]
    else:
        return result_list


# TODO: Awaiting refactoring
async def async_inference_detector(model, imgs):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        img (str | ndarray): Either image files or loaded images.

    Returns:
        Awaitable detection results.
    """
    if not isinstance(imgs, (list, tuple)):
        imgs = [imgs]

    cfg = model.cfg

    if isinstance(imgs[0], np.ndarray):
        cfg = cfg.copy()
        # set loading pipeline type
        cfg.data.test.pipeline[0].type = 'LoadImageFromNDArray'

    # cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    test_pipeline = Compose(cfg.data.test.pipeline)

    datas = []
    for img in imgs:
        # prepare data
        if isinstance(img, np.ndarray):
            # directly add img
            data = dict(img=img)
        else:
            # add information into dict
            data = dict(img_info=dict(filename=img), img_prefix=None)
        # build the data pipeline
        data = test_pipeline(data)
        datas.append(data)

    for m in model.modules():
        assert not isinstance(
            m,
            RoIPool), 'CPU inference with RoIPool is not supported currently.'

    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    results = await model.aforward_test(data, rescale=True)
    return results


def build_test_pipeline(cfg: ConfigType) -> ConfigType:
    """Build test_pipeline for mot/vis demo. In mot/vis infer, original
    test_pipeline should remove the "LoadImageFromFile" and
    "LoadTrackAnnotations".

    Args:
         cfg (ConfigDict): The loaded config.
    Returns:
         ConfigType: new test_pipeline
    """
    # remove the "LoadImageFromFile" and "LoadTrackAnnotations" in pipeline
    transform_broadcaster = cfg.test_dataloader.dataset.pipeline[0].copy()
    for transform in transform_broadcaster['transforms']:
        if transform['type'] == 'Resize':
            transform_broadcaster['transforms'] = transform
    pack_track_inputs = cfg.test_dataloader.dataset.pipeline[-1].copy()
    test_pipeline = Compose([transform_broadcaster, pack_track_inputs])

    return test_pipeline


def inference_mot(model: nn.Module, img: np.ndarray, frame_id: int,
                  video_len: int) -> SampleList:
    """Inference image(s) with the mot model.

    Args:
        model (nn.Module): The loaded mot model.
        img (np.ndarray): Loaded image.
        frame_id (int): frame id.
        video_len (int): demo video length
    Returns:
        SampleList: The tracking data samples.
    """
    cfg = model.cfg
    data = dict(
        img=[img.astype(np.float32)],
        frame_id=[frame_id],
        ori_shape=[img.shape[:2]],
        img_id=[frame_id + 1],
        ori_video_length=[video_len])

    test_pipeline = build_test_pipeline(cfg)
    data = test_pipeline(data)

    if not next(model.parameters()).is_cuda:
        for m in model.modules():
            assert not isinstance(
                m, RoIPool
            ), 'CPU inference with RoIPool is not supported currently.'

    # forward the model
    with torch.no_grad():
        data = default_collate([data])
        result = model.test_step(data)[0]
    return result


def init_track_model(config: Union[str, Config],
                     checkpoint: Optional[str] = None,
                     detector: Optional[str] = None,
                     reid: Optional[str] = None,
                     device: str = 'cuda:0',
                     cfg_options: Optional[dict] = None) -> nn.Module:
    """Initialize a model from config file.

    Args:
        config (str or :obj:`mmengine.Config`): Config file path or the config
            object.
        checkpoint (Optional[str], optional): Checkpoint path. Defaults to
            None.
        detector (Optional[str], optional): Detector Checkpoint path, use in
            some tracking algorithms like sort.  Defaults to None.
        reid (Optional[str], optional): Reid checkpoint path. use in
            some tracking algorithms like sort. Defaults to None.
        device (str, optional): The device that the model inferences on.
            Defaults to `cuda:0`.
        cfg_options (Optional[dict], optional): Options to override some
            settings in the used config. Defaults to None.

    Returns:
        nn.Module: The constructed model.
    """
    if isinstance(config, str):
        config = Config.fromfile(config)
    elif not isinstance(config, Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if cfg_options is not None:
        config.merge_from_dict(cfg_options)

    model = MODELS.build(config.model)

    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        # Weights converted from elsewhere may not have meta fields.
        checkpoint_meta = checkpoint.get('meta', {})
        # save the dataset_meta in the model for convenience
        if 'dataset_meta' in checkpoint_meta:
            if 'CLASSES' in checkpoint_meta['dataset_meta']:
                value = checkpoint_meta['dataset_meta'].pop('CLASSES')
                checkpoint_meta['dataset_meta']['classes'] = value
            model.dataset_meta = checkpoint_meta['dataset_meta']

    if detector is not None:
        assert not (checkpoint and detector), \
            'Error: checkpoint and detector checkpoint cannot both exist'
        load_checkpoint(model.detector, detector, map_location='cpu')

    if reid is not None:
        assert not (checkpoint and reid), \
            'Error: checkpoint and reid checkpoint cannot both exist'
        load_checkpoint(model.reid, reid, map_location='cpu')

    # Some methods don't load checkpoints or checkpoints don't contain
    # 'dataset_meta'
    # VIS need dataset_meta, MOT don't need dataset_meta
    if not hasattr(model, 'dataset_meta'):
        warnings.warn('dataset_meta or class names are missed, '
                      'use None by default.')
        model.dataset_meta = {'classes': None}

    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model