File size: 3,708 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional, Union

import numpy as np

from mmcv.image import rgb2bgr
from mmcv.video import flowread
from .image import imshow


def flowshow(flow: Union[np.ndarray, str],
             win_name: str = '',
             wait_time: int = 0) -> None:
    """Show optical flow.

    Args:
        flow (ndarray or str): The optical flow to be displayed.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
    """
    flow = flowread(flow)
    flow_img = flow2rgb(flow)
    imshow(rgb2bgr(flow_img), win_name, wait_time)


def flow2rgb(flow: np.ndarray,
             color_wheel: Optional[np.ndarray] = None,
             unknown_thr: float = 1e6) -> np.ndarray:
    """Convert flow map to RGB image.

    Args:
        flow (ndarray): Array of optical flow.
        color_wheel (ndarray or None): Color wheel used to map flow field to
            RGB colorspace. Default color wheel will be used if not specified.
        unknown_thr (float): Values above this threshold will be marked as
            unknown and thus ignored.

    Returns:
        ndarray: RGB image that can be visualized.
    """
    assert flow.ndim == 3 and flow.shape[-1] == 2
    if color_wheel is None:
        color_wheel = make_color_wheel()
    assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3
    num_bins = color_wheel.shape[0]

    dx = flow[:, :, 0].copy()
    dy = flow[:, :, 1].copy()

    ignore_inds = (
        np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) |
        (np.abs(dy) > unknown_thr))
    dx[ignore_inds] = 0
    dy[ignore_inds] = 0

    rad = np.sqrt(dx**2 + dy**2)
    if np.any(rad > np.finfo(float).eps):
        max_rad = np.max(rad)
        dx /= max_rad
        dy /= max_rad

    rad = np.sqrt(dx**2 + dy**2)
    angle = np.arctan2(-dy, -dx) / np.pi

    bin_real = (angle + 1) / 2 * (num_bins - 1)
    bin_left = np.floor(bin_real).astype(int)
    bin_right = (bin_left + 1) % num_bins
    w = (bin_real - bin_left.astype(np.float32))[..., None]
    flow_img = (1 -
                w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :]
    small_ind = rad <= 1
    flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind])
    flow_img[np.logical_not(small_ind)] *= 0.75

    flow_img[ignore_inds, :] = 0

    return flow_img


def make_color_wheel(bins: Optional[Union[list, tuple]] = None) -> np.ndarray:
    """Build a color wheel.

    Args:
        bins(list or tuple, optional): Specify the number of bins for each
            color range, corresponding to six ranges: red -> yellow,
            yellow -> green, green -> cyan, cyan -> blue, blue -> magenta,
            magenta -> red. [15, 6, 4, 11, 13, 6] is used for default
            (see Middlebury).

    Returns:
        ndarray: Color wheel of shape (total_bins, 3).
    """
    if bins is None:
        bins = [15, 6, 4, 11, 13, 6]
    assert len(bins) == 6

    RY, YG, GC, CB, BM, MR = tuple(bins)

    ry = [1, np.arange(RY) / RY, 0]
    yg = [1 - np.arange(YG) / YG, 1, 0]
    gc = [0, 1, np.arange(GC) / GC]
    cb = [0, 1 - np.arange(CB) / CB, 1]
    bm = [np.arange(BM) / BM, 0, 1]
    mr = [1, 0, 1 - np.arange(MR) / MR]

    num_bins = RY + YG + GC + CB + BM + MR

    color_wheel = np.zeros((3, num_bins), dtype=np.float32)

    col = 0
    for i, color in enumerate([ry, yg, gc, cb, bm, mr]):
        for j in range(3):
            color_wheel[j, col:col + bins[i]] = color[j]
        col += bins[i]

    return color_wheel.T