File size: 13,327 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from typing import Optional

import mmengine.fileio as fileio
import numpy as np

import mmcv
from .base import BaseTransform
from .builder import TRANSFORMS


@TRANSFORMS.register_module()
class LoadImageFromFile(BaseTransform):
    """Load an image from file.

    Required Keys:

    - img_path

    Modified Keys:

    - img
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
        color_type (str): The flag argument for :func:`mmcv.imfrombytes`.
            Defaults to 'color'.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:`mmcv.imfrombytes`.
            See :func:`mmcv.imfrombytes` for details.
            Defaults to 'cv2'.
        file_client_args (dict, optional): Arguments to instantiate a
            FileClient. See :class:`mmengine.fileio.FileClient` for details.
            Defaults to None. It will be deprecated in future. Please use
            ``backend_args`` instead.
            Deprecated in version 2.0.0rc4.
        ignore_empty (bool): Whether to allow loading empty image or file path
            not existent. Defaults to False.
        backend_args (dict, optional): Instantiates the corresponding file
            backend. It may contain `backend` key to specify the file
            backend. If it contains, the file backend corresponding to this
            value will be used and initialized with the remaining values,
            otherwise the corresponding file backend will be selected
            based on the prefix of the file path. Defaults to None.
            New in version 2.0.0rc4.
    """

    def __init__(self,
                 to_float32: bool = False,
                 color_type: str = 'color',
                 imdecode_backend: str = 'cv2',
                 file_client_args: Optional[dict] = None,
                 ignore_empty: bool = False,
                 *,
                 backend_args: Optional[dict] = None) -> None:
        self.ignore_empty = ignore_empty
        self.to_float32 = to_float32
        self.color_type = color_type
        self.imdecode_backend = imdecode_backend

        self.file_client_args: Optional[dict] = None
        self.backend_args: Optional[dict] = None
        if file_client_args is not None:
            warnings.warn(
                '"file_client_args" will be deprecated in future. '
                'Please use "backend_args" instead', DeprecationWarning)
            if backend_args is not None:
                raise ValueError(
                    '"file_client_args" and "backend_args" cannot be set '
                    'at the same time.')

            self.file_client_args = file_client_args.copy()
        if backend_args is not None:
            self.backend_args = backend_args.copy()

    def transform(self, results: dict) -> Optional[dict]:
        """Functions to load image.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """

        filename = results['img_path']
        try:
            if self.file_client_args is not None:
                file_client = fileio.FileClient.infer_client(
                    self.file_client_args, filename)
                img_bytes = file_client.get(filename)
            else:
                img_bytes = fileio.get(
                    filename, backend_args=self.backend_args)
            img = mmcv.imfrombytes(
                img_bytes, flag=self.color_type, backend=self.imdecode_backend)
        except Exception as e:
            if self.ignore_empty:
                return None
            else:
                raise e
        # in some cases, images are not read successfully, the img would be
        # `None`, refer to https://github.com/open-mmlab/mmpretrain/issues/1427
        assert img is not None, f'failed to load image: {filename}'
        if self.to_float32:
            img = img.astype(np.float32)

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]
        return results

    def __repr__(self):
        repr_str = (f'{self.__class__.__name__}('
                    f'ignore_empty={self.ignore_empty}, '
                    f'to_float32={self.to_float32}, '
                    f"color_type='{self.color_type}', "
                    f"imdecode_backend='{self.imdecode_backend}', ")

        if self.file_client_args is not None:
            repr_str += f'file_client_args={self.file_client_args})'
        else:
            repr_str += f'backend_args={self.backend_args})'

        return repr_str


@TRANSFORMS.register_module()
class LoadAnnotations(BaseTransform):
    """Load and process the ``instances`` and ``seg_map`` annotation provided
    by dataset.

    The annotation format is as the following:

    .. code-block:: python

        {
            'instances':
            [
                {
                # List of 4 numbers representing the bounding box of the
                # instance, in (x1, y1, x2, y2) order.
                'bbox': [x1, y1, x2, y2],

                # Label of image classification.
                'bbox_label': 1,

                # Used in key point detection.
                # Can only load the format of [x1, y1, v1,…, xn, yn, vn]. v[i]
                # means the visibility of this keypoint. n must be equal to the
                # number of keypoint categories.
                'keypoints': [x1, y1, v1, ..., xn, yn, vn]
                }
            ]
            # Filename of semantic or panoptic segmentation ground truth file.
            'seg_map_path': 'a/b/c'
        }

    After this module, the annotation has been changed to the format below:

    .. code-block:: python

        {
            # In (x1, y1, x2, y2) order, float type. N is the number of bboxes
            # in np.float32
            'gt_bboxes': np.ndarray(N, 4)
             # In np.int64 type.
            'gt_bboxes_labels': np.ndarray(N, )
             # In uint8 type.
            'gt_seg_map': np.ndarray (H, W)
             # with (x, y, v) order, in np.float32 type.
            'gt_keypoints': np.ndarray(N, NK, 3)
        }

    Required Keys:

    - instances

      - bbox (optional)
      - bbox_label
      - keypoints (optional)

    - seg_map_path (optional)

    Added Keys:

    - gt_bboxes (np.float32)
    - gt_bboxes_labels (np.int64)
    - gt_seg_map (np.uint8)
    - gt_keypoints (np.float32)

    Args:
        with_bbox (bool): Whether to parse and load the bbox annotation.
            Defaults to True.
        with_label (bool): Whether to parse and load the label annotation.
            Defaults to True.
        with_seg (bool): Whether to parse and load the semantic segmentation
            annotation. Defaults to False.
        with_keypoints (bool): Whether to parse and load the keypoints
            annotation. Defaults to False.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:`mmcv.imfrombytes`.
            See :func:`mmcv.imfrombytes` for details.
            Defaults to 'cv2'.
        file_client_args (dict, optional): Arguments to instantiate a
            FileClient. See :class:`mmengine.fileio.FileClient` for details.
            Defaults to None. It will be deprecated in future. Please use
            ``backend_args`` instead.
            Deprecated in version 2.0.0rc4.
        backend_args (dict, optional): Instantiates the corresponding file
            backend. It may contain `backend` key to specify the file
            backend. If it contains, the file backend corresponding to this
            value will be used and initialized with the remaining values,
            otherwise the corresponding file backend will be selected
            based on the prefix of the file path. Defaults to None.
            New in version 2.0.0rc4.
    """

    def __init__(
        self,
        with_bbox: bool = True,
        with_label: bool = True,
        with_seg: bool = False,
        with_keypoints: bool = False,
        imdecode_backend: str = 'cv2',
        file_client_args: Optional[dict] = None,
        *,
        backend_args: Optional[dict] = None,
    ) -> None:
        super().__init__()
        self.with_bbox = with_bbox
        self.with_label = with_label
        self.with_seg = with_seg
        self.with_keypoints = with_keypoints
        self.imdecode_backend = imdecode_backend

        self.file_client_args: Optional[dict] = None
        self.backend_args: Optional[dict] = None
        if file_client_args is not None:
            warnings.warn(
                '"file_client_args" will be deprecated in future. '
                'Please use "backend_args" instead', DeprecationWarning)
            if backend_args is not None:
                raise ValueError(
                    '"file_client_args" and "backend_args" cannot be set '
                    'at the same time.')

            self.file_client_args = file_client_args.copy()
        if backend_args is not None:
            self.backend_args = backend_args.copy()

    def _load_bboxes(self, results: dict) -> None:
        """Private function to load bounding box annotations.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded bounding box annotations.
        """
        gt_bboxes = []
        for instance in results['instances']:
            gt_bboxes.append(instance['bbox'])
        results['gt_bboxes'] = np.array(
            gt_bboxes, dtype=np.float32).reshape(-1, 4)

    def _load_labels(self, results: dict) -> None:
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded label annotations.
        """
        gt_bboxes_labels = []
        for instance in results['instances']:
            gt_bboxes_labels.append(instance['bbox_label'])
        results['gt_bboxes_labels'] = np.array(
            gt_bboxes_labels, dtype=np.int64)

    def _load_seg_map(self, results: dict) -> None:
        """Private function to load semantic segmentation annotations.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded semantic segmentation annotations.
        """
        if self.file_client_args is not None:
            file_client = fileio.FileClient.infer_client(
                self.file_client_args, results['seg_map_path'])
            img_bytes = file_client.get(results['seg_map_path'])
        else:
            img_bytes = fileio.get(
                results['seg_map_path'], backend_args=self.backend_args)

        results['gt_seg_map'] = mmcv.imfrombytes(
            img_bytes, flag='unchanged',
            backend=self.imdecode_backend).squeeze()

    def _load_kps(self, results: dict) -> None:
        """Private function to load keypoints annotations.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded keypoints annotations.
        """
        gt_keypoints = []
        for instance in results['instances']:
            gt_keypoints.append(instance['keypoints'])
        results['gt_keypoints'] = np.array(gt_keypoints, np.float32).reshape(
            (len(gt_keypoints), -1, 3))

    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.

        Args:
            results (dict): Result dict from
                :class:`mmengine.dataset.BaseDataset`.

        Returns:
            dict: The dict contains loaded bounding box, label and
            semantic segmentation and keypoints annotations.
        """

        if self.with_bbox:
            self._load_bboxes(results)
        if self.with_label:
            self._load_labels(results)
        if self.with_seg:
            self._load_seg_map(results)
        if self.with_keypoints:
            self._load_kps(results)
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(with_bbox={self.with_bbox}, '
        repr_str += f'with_label={self.with_label}, '
        repr_str += f'with_seg={self.with_seg}, '
        repr_str += f'with_keypoints={self.with_keypoints}, '
        repr_str += f"imdecode_backend='{self.imdecode_backend}', "

        if self.file_client_args is not None:
            repr_str += f'file_client_args={self.file_client_args})'
        else:
            repr_str += f'backend_args={self.backend_args})'

        return repr_str