File size: 8,475 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any

import torch
import torch.nn as nn
from mmengine.utils import deprecated_api_warning
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext',
                                 ['roi_align_forward', 'roi_align_backward'])


class RoIAlignFunction(Function):

    @staticmethod
    def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio,
                 pool_mode, aligned):
        from torch.onnx import TensorProtoDataType
        from torch.onnx.symbolic_opset9 import sub

        def _select(g, self, dim, index):
            return g.op('Gather', self, index, axis_i=dim)

        # batch_indices = rois[:, 0].long()
        batch_indices = _select(
            g, rois, 1,
            g.op('Constant', value_t=torch.tensor([0], dtype=torch.long)))
        batch_indices = g.op('Squeeze', batch_indices, axes_i=[1])
        batch_indices = g.op(
            'Cast', batch_indices, to_i=TensorProtoDataType.INT64)
        # rois = rois[:, 1:]
        rois = _select(
            g, rois, 1,
            g.op(
                'Constant',
                value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long)))

        if aligned:
            # rois -= 0.5/spatial_scale
            aligned_offset = g.op(
                'Constant',
                value_t=torch.tensor([0.5 / spatial_scale],
                                     dtype=torch.float32))
            rois = sub(g, rois, aligned_offset)
        # roi align
        return g.op(
            'RoiAlign',
            input,
            rois,
            batch_indices,
            output_height_i=output_size[0],
            output_width_i=output_size[1],
            spatial_scale_f=spatial_scale,
            sampling_ratio_i=max(0, sampling_ratio),
            mode_s=pool_mode)

    @staticmethod
    def forward(ctx: Any,
                input: torch.Tensor,
                rois: torch.Tensor,
                output_size: int,
                spatial_scale: float = 1.0,
                sampling_ratio: int = 0,
                pool_mode: str = 'avg',
                aligned: bool = True) -> torch.Tensor:
        ctx.output_size = _pair(output_size)
        ctx.spatial_scale = spatial_scale
        ctx.sampling_ratio = sampling_ratio
        assert pool_mode in ('max', 'avg')
        ctx.pool_mode = 0 if pool_mode == 'max' else 1
        ctx.aligned = aligned
        ctx.input_shape = input.size()

        assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!'

        output_shape = (rois.size(0), input.size(1), ctx.output_size[0],
                        ctx.output_size[1])
        output = input.new_zeros(output_shape)
        if ctx.pool_mode == 0:
            argmax_y = input.new_zeros(output_shape)
            argmax_x = input.new_zeros(output_shape)
        else:
            argmax_y = input.new_zeros(0)
            argmax_x = input.new_zeros(0)

        ext_module.roi_align_forward(
            input,
            rois,
            output,
            argmax_y,
            argmax_x,
            aligned_height=ctx.output_size[0],
            aligned_width=ctx.output_size[1],
            spatial_scale=ctx.spatial_scale,
            sampling_ratio=ctx.sampling_ratio,
            pool_mode=ctx.pool_mode,
            aligned=ctx.aligned)

        ctx.save_for_backward(rois, argmax_y, argmax_x)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
        rois, argmax_y, argmax_x = ctx.saved_tensors
        grad_input = grad_output.new_zeros(ctx.input_shape)
        # complex head architecture may cause grad_output uncontiguous.
        grad_output = grad_output.contiguous()
        ext_module.roi_align_backward(
            grad_output,
            rois,
            argmax_y,
            argmax_x,
            grad_input,
            aligned_height=ctx.output_size[0],
            aligned_width=ctx.output_size[1],
            spatial_scale=ctx.spatial_scale,
            sampling_ratio=ctx.sampling_ratio,
            pool_mode=ctx.pool_mode,
            aligned=ctx.aligned)
        return grad_input, None, None, None, None, None, None


roi_align = RoIAlignFunction.apply


class RoIAlign(nn.Module):
    """RoI align pooling layer.

    Args:
        output_size (tuple): h, w
        spatial_scale (float): scale the input boxes by this number
        sampling_ratio (int): number of inputs samples to take for each
            output sample. 0 to take samples densely for current models.
        pool_mode (str, 'avg' or 'max'): pooling mode in each bin.
        aligned (bool): if False, use the legacy implementation in
            MMDetection. If True, align the results more perfectly.
        use_torchvision (bool): whether to use roi_align from torchvision.

    Note:
        The implementation of RoIAlign when aligned=True is modified from
        https://github.com/facebookresearch/detectron2/

        The meaning of aligned=True:

        Given a continuous coordinate c, its two neighboring pixel
        indices (in our pixel model) are computed by floor(c - 0.5) and
        ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
        indices [0] and [1] (which are sampled from the underlying signal
        at continuous coordinates 0.5 and 1.5). But the original roi_align
        (aligned=False) does not subtract the 0.5 when computing
        neighboring pixel indices and therefore it uses pixels with a
        slightly incorrect alignment (relative to our pixel model) when
        performing bilinear interpolation.

        With `aligned=True`,
        we first appropriately scale the ROI and then shift it by -0.5
        prior to calling roi_align. This produces the correct neighbors;

        The difference does not make a difference to the model's
        performance if ROIAlign is used together with conv layers.
    """

    @deprecated_api_warning(
        {
            'out_size': 'output_size',
            'sample_num': 'sampling_ratio'
        },
        cls_name='RoIAlign')
    def __init__(self,
                 output_size: tuple,
                 spatial_scale: float = 1.0,
                 sampling_ratio: int = 0,
                 pool_mode: str = 'avg',
                 aligned: bool = True,
                 use_torchvision: bool = False):
        super().__init__()

        self.output_size = _pair(output_size)
        self.spatial_scale = float(spatial_scale)
        self.sampling_ratio = int(sampling_ratio)
        self.pool_mode = pool_mode
        self.aligned = aligned
        self.use_torchvision = use_torchvision

    def forward(self, input: torch.Tensor, rois: torch.Tensor) -> torch.Tensor:
        """
        Args:
            input: NCHW images
            rois: Bx5 boxes. First column is the index into N.\
                The other 4 columns are xyxy.
        """
        if self.use_torchvision:
            from torchvision.ops import roi_align as tv_roi_align
            if 'aligned' in tv_roi_align.__code__.co_varnames:
                return tv_roi_align(input, rois, self.output_size,
                                    self.spatial_scale, self.sampling_ratio,
                                    self.aligned)
            else:
                if self.aligned:
                    rois -= rois.new_tensor([0.] +
                                            [0.5 / self.spatial_scale] * 4)
                return tv_roi_align(input, rois, self.output_size,
                                    self.spatial_scale, self.sampling_ratio)
        else:
            return roi_align(input, rois, self.output_size, self.spatial_scale,
                             self.sampling_ratio, self.pool_mode, self.aligned)

    def __repr__(self):
        s = self.__class__.__name__
        s += f'(output_size={self.output_size}, '
        s += f'spatial_scale={self.spatial_scale}, '
        s += f'sampling_ratio={self.sampling_ratio}, '
        s += f'pool_mode={self.pool_mode}, '
        s += f'aligned={self.aligned}, '
        s += f'use_torchvision={self.use_torchvision})'
        return s