Spaces:
Build error
Build error
File size: 5,669 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import Tensor
from ..utils import ext_loader
ext_module = ext_loader.load_ext('_ext', [
'points_in_boxes_part_forward', 'points_in_boxes_cpu_forward',
'points_in_boxes_all_forward'
])
def points_in_boxes_part(points: Tensor, boxes: Tensor) -> Tensor:
"""Find the box in which each point is (CUDA).
Args:
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate.
boxes (torch.Tensor): [B, T, 7],
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz] in
LiDAR/DEPTH coordinate, (x, y, z) is the bottom center.
Returns:
torch.Tensor: Return the box indices of points with the shape of
(B, M). Default background = -1.
"""
assert points.shape[0] == boxes.shape[0], \
'Points and boxes should have the same batch size, ' \
f'but got {points.shape[0]} and {boxes.shape[0]}'
assert boxes.shape[2] == 7, \
'boxes dimension should be 7, ' \
f'but got unexpected shape {boxes.shape[2]}'
assert points.shape[2] == 3, \
'points dimension should be 3, ' \
f'but got unexpected shape {points.shape[2]}'
batch_size, num_points, _ = points.shape
box_idxs_of_pts = points.new_zeros((batch_size, num_points),
dtype=torch.int).fill_(-1)
# If manually put the tensor 'points' or 'boxes' on a device
# which is not the current device, some temporary variables
# will be created on the current device in the cuda op,
# and the output will be incorrect.
# Therefore, we force the current device to be the same
# as the device of the tensors if it was not.
# Please refer to https://github.com/open-mmlab/mmdetection3d/issues/305
# for the incorrect output before the fix.
points_device = points.get_device()
assert points_device == boxes.get_device(), \
'Points and boxes should be put on the same device'
if torch.cuda.current_device() != points_device:
torch.cuda.set_device(points_device)
ext_module.points_in_boxes_part_forward(boxes.contiguous(),
points.contiguous(),
box_idxs_of_pts)
return box_idxs_of_pts
def points_in_boxes_cpu(points: Tensor, boxes: Tensor) -> Tensor:
"""Find all boxes in which each point is (CPU). The CPU version of
:meth:`points_in_boxes_all`.
Args:
points (torch.Tensor): [B, M, 3], [x, y, z] in
LiDAR/DEPTH coordinate
boxes (torch.Tensor): [B, T, 7],
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
(x, y, z) is the bottom center.
Returns:
torch.Tensor: Return the box indices of points with the shape of
(B, M, T). Default background = 0.
"""
assert points.shape[0] == boxes.shape[0], \
'Points and boxes should have the same batch size, ' \
f'but got {points.shape[0]} and {boxes.shape[0]}'
assert boxes.shape[2] == 7, \
'boxes dimension should be 7, ' \
f'but got unexpected shape {boxes.shape[2]}'
assert points.shape[2] == 3, \
'points dimension should be 3, ' \
f'but got unexpected shape {points.shape[2]}'
batch_size, num_points, _ = points.shape
num_boxes = boxes.shape[1]
point_indices = points.new_zeros((batch_size, num_boxes, num_points),
dtype=torch.int)
for b in range(batch_size):
ext_module.points_in_boxes_cpu_forward(boxes[b].float().contiguous(),
points[b].float().contiguous(),
point_indices[b])
point_indices = point_indices.transpose(1, 2)
return point_indices
def points_in_boxes_all(points: Tensor, boxes: Tensor) -> Tensor:
"""Find all boxes in which each point is (CUDA).
Args:
points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR/DEPTH coordinate
boxes (torch.Tensor): [B, T, 7],
num_valid_boxes <= T, [x, y, z, x_size, y_size, z_size, rz],
(x, y, z) is the bottom center.
Returns:
torch.Tensor: Return the box indices of points with the shape of
(B, M, T). Default background = 0.
"""
assert boxes.shape[0] == points.shape[0], \
'Points and boxes should have the same batch size, ' \
f'but got {boxes.shape[0]} and {boxes.shape[0]}'
assert boxes.shape[2] == 7, \
'boxes dimension should be 7, ' \
f'but got unexpected shape {boxes.shape[2]}'
assert points.shape[2] == 3, \
'points dimension should be 3, ' \
f'but got unexpected shape {points.shape[2]}'
batch_size, num_points, _ = points.shape
num_boxes = boxes.shape[1]
box_idxs_of_pts = points.new_zeros((batch_size, num_points, num_boxes),
dtype=torch.int).fill_(0)
# Same reason as line 25-32
points_device = points.get_device()
assert points_device == boxes.get_device(), \
'Points and boxes should be put on the same device'
if torch.cuda.current_device() != points_device:
torch.cuda.set_device(points_device)
ext_module.points_in_boxes_all_forward(boxes.contiguous(),
points.contiguous(),
box_idxs_of_pts)
return box_idxs_of_pts
|