File size: 19,505 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from mmengine.utils import deprecated_api_warning
from torch import Tensor

from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['nms', 'softnms', 'nms_match', 'nms_rotated', 'nms_quadri'])


# This function is modified from: https://github.com/pytorch/vision/
class NMSop(torch.autograd.Function):

    @staticmethod
    def forward(ctx: Any, bboxes: Tensor, scores: Tensor, iou_threshold: float,
                offset: int, score_threshold: float, max_num: int) -> Tensor:
        is_filtering_by_score = score_threshold > 0
        if is_filtering_by_score:
            valid_mask = scores > score_threshold
            bboxes, scores = bboxes[valid_mask], scores[valid_mask]
            valid_inds = torch.nonzero(
                valid_mask, as_tuple=False).squeeze(dim=1)

        inds = ext_module.nms(
            bboxes, scores, iou_threshold=float(iou_threshold), offset=offset)

        if max_num > 0:
            inds = inds[:max_num]
        if is_filtering_by_score:
            inds = valid_inds[inds]
        return inds


class SoftNMSop(torch.autograd.Function):

    @staticmethod
    def forward(ctx: Any, boxes: Tensor, scores: Tensor, iou_threshold: float,
                sigma: float, min_score: float, method: int,
                offset: int) -> Tuple[Tensor, Tensor]:
        dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
        inds = ext_module.softnms(
            boxes.cpu(),
            scores.cpu(),
            dets.cpu(),
            iou_threshold=float(iou_threshold),
            sigma=float(sigma),
            min_score=float(min_score),
            method=int(method),
            offset=int(offset))
        return dets, inds

    @staticmethod
    def symbolic(g, boxes, scores, iou_threshold, sigma, min_score, method,
                 offset):
        from packaging import version
        assert version.parse(torch.__version__) >= version.parse('1.7.0')
        nms_out = g.op(
            'mmcv::SoftNonMaxSuppression',
            boxes,
            scores,
            iou_threshold_f=float(iou_threshold),
            sigma_f=float(sigma),
            min_score_f=float(min_score),
            method_i=int(method),
            offset_i=int(offset),
            outputs=2)
        return nms_out


array_like_type = Union[Tensor, np.ndarray]


@deprecated_api_warning({'iou_thr': 'iou_threshold'})
def nms(boxes: array_like_type,
        scores: array_like_type,
        iou_threshold: float,
        offset: int = 0,
        score_threshold: float = 0,
        max_num: int = -1) -> Tuple[array_like_type, array_like_type]:
    """Dispatch to either CPU or GPU NMS implementations.

    The input can be either torch tensor or numpy array. GPU NMS will be used
    if the input is gpu tensor, otherwise CPU NMS
    will be used. The returned type will always be the same as inputs.

    Arguments:
        boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
        scores (torch.Tensor or np.ndarray): scores in shape (N, ).
        iou_threshold (float): IoU threshold for NMS.
        offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).
        score_threshold (float): score threshold for NMS.
        max_num (int): maximum number of boxes after NMS.

    Returns:
        tuple: kept dets (boxes and scores) and indice, which always have
        the same data type as the input.

    Example:
        >>> boxes = np.array([[49.1, 32.4, 51.0, 35.9],
        >>>                   [49.3, 32.9, 51.0, 35.3],
        >>>                   [49.2, 31.8, 51.0, 35.4],
        >>>                   [35.1, 11.5, 39.1, 15.7],
        >>>                   [35.6, 11.8, 39.3, 14.2],
        >>>                   [35.3, 11.5, 39.9, 14.5],
        >>>                   [35.2, 11.7, 39.7, 15.7]], dtype=np.float32)
        >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.5, 0.4, 0.3],\
               dtype=np.float32)
        >>> iou_threshold = 0.6
        >>> dets, inds = nms(boxes, scores, iou_threshold)
        >>> assert len(inds) == len(dets) == 3
    """
    assert isinstance(boxes, (Tensor, np.ndarray))
    assert isinstance(scores, (Tensor, np.ndarray))
    is_numpy = False
    if isinstance(boxes, np.ndarray):
        is_numpy = True
        boxes = torch.from_numpy(boxes)
    if isinstance(scores, np.ndarray):
        scores = torch.from_numpy(scores)
    assert boxes.size(1) == 4
    assert boxes.size(0) == scores.size(0)
    assert offset in (0, 1)

    inds = NMSop.apply(boxes, scores, iou_threshold, offset, score_threshold,
                       max_num)
    dets = torch.cat((boxes[inds], scores[inds].reshape(-1, 1)), dim=1)
    if is_numpy:
        dets = dets.cpu().numpy()
        inds = inds.cpu().numpy()
    return dets, inds


@deprecated_api_warning({'iou_thr': 'iou_threshold'})
def soft_nms(boxes: array_like_type,
             scores: array_like_type,
             iou_threshold: float = 0.3,
             sigma: float = 0.5,
             min_score: float = 1e-3,
             method: str = 'linear',
             offset: int = 0) -> Tuple[array_like_type, array_like_type]:
    """Dispatch to only CPU Soft NMS implementations.

    The input can be either a torch tensor or numpy array.
    The returned type will always be the same as inputs.

    Args:
        boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
        scores (torch.Tensor or np.ndarray): scores in shape (N, ).
        iou_threshold (float): IoU threshold for NMS.
        sigma (float): hyperparameter for gaussian method
        min_score (float): score filter threshold
        method (str): either 'linear' or 'gaussian'
        offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).

    Returns:
        tuple: kept dets (boxes and scores) and indice, which always have
        the same data type as the input.

    Example:
        >>> boxes = np.array([[4., 3., 5., 3.],
        >>>                   [4., 3., 5., 4.],
        >>>                   [3., 1., 3., 1.],
        >>>                   [3., 1., 3., 1.],
        >>>                   [3., 1., 3., 1.],
        >>>                   [3., 1., 3., 1.]], dtype=np.float32)
        >>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32)
        >>> iou_threshold = 0.6
        >>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5)
        >>> assert len(inds) == len(dets) == 5
    """

    assert isinstance(boxes, (Tensor, np.ndarray))
    assert isinstance(scores, (Tensor, np.ndarray))
    is_numpy = False
    if isinstance(boxes, np.ndarray):
        is_numpy = True
        boxes = torch.from_numpy(boxes)
    if isinstance(scores, np.ndarray):
        scores = torch.from_numpy(scores)
    assert boxes.size(1) == 4
    assert boxes.size(0) == scores.size(0)
    assert offset in (0, 1)
    method_dict = {'naive': 0, 'linear': 1, 'gaussian': 2}
    assert method in method_dict.keys()

    if torch.__version__ == 'parrots':
        dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
        indata_list = [boxes.cpu(), scores.cpu(), dets.cpu()]
        indata_dict = {
            'iou_threshold': float(iou_threshold),
            'sigma': float(sigma),
            'min_score': min_score,
            'method': method_dict[method],
            'offset': int(offset)
        }
        inds = ext_module.softnms(*indata_list, **indata_dict)
    else:
        dets, inds = SoftNMSop.apply(boxes.cpu(), scores.cpu(),
                                     float(iou_threshold), float(sigma),
                                     float(min_score), method_dict[method],
                                     int(offset))

    dets = dets[:inds.size(0)]

    if is_numpy:
        dets = dets.cpu().numpy()
        inds = inds.cpu().numpy()
        return dets, inds
    else:
        return dets.to(device=boxes.device), inds.to(device=boxes.device)


def batched_nms(boxes: Tensor,
                scores: Tensor,
                idxs: Tensor,
                nms_cfg: Optional[Dict],
                class_agnostic: bool = False) -> Tuple[Tensor, Tensor]:
    r"""Performs non-maximum suppression in a batched fashion.

    Modified from `torchvision/ops/boxes.py#L39
    <https://github.com/pytorch/vision/blob/
    505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39>`_.
    In order to perform NMS independently per class, we add an offset to all
    the boxes. The offset is dependent only on the class idx, and is large
    enough so that boxes from different classes do not overlap.

    Note:
        In v1.4.1 and later, ``batched_nms`` supports skipping the NMS and
        returns sorted raw results when `nms_cfg` is None.

    Args:
        boxes (torch.Tensor): boxes in shape (N, 4) or (N, 5).
        scores (torch.Tensor): scores in shape (N, ).
        idxs (torch.Tensor): each index value correspond to a bbox cluster,
            and NMS will not be applied between elements of different idxs,
            shape (N, ).
        nms_cfg (dict | optional): Supports skipping the nms when `nms_cfg`
            is None, otherwise it should specify nms type and other
            parameters like `iou_thr`. Possible keys includes the following.

            - iou_threshold (float): IoU threshold used for NMS.
            - split_thr (float): threshold number of boxes. In some cases the
              number of boxes is large (e.g., 200k). To avoid OOM during
              training, the users could set `split_thr` to a small value.
              If the number of boxes is greater than the threshold, it will
              perform NMS on each group of boxes separately and sequentially.
              Defaults to 10000.
        class_agnostic (bool): if true, nms is class agnostic,
            i.e. IoU thresholding happens over all boxes,
            regardless of the predicted class. Defaults to False.

    Returns:
        tuple: kept dets and indice.

        - boxes (Tensor): Bboxes with score after nms, has shape
          (num_bboxes, 5). last dimension 5 arrange as
          (x1, y1, x2, y2, score)
        - keep (Tensor): The indices of remaining boxes in input
          boxes.
    """
    # skip nms when nms_cfg is None
    if nms_cfg is None:
        scores, inds = scores.sort(descending=True)
        boxes = boxes[inds]
        return torch.cat([boxes, scores[:, None]], -1), inds

    nms_cfg_ = nms_cfg.copy()
    class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic)
    if class_agnostic:
        boxes_for_nms = boxes
    else:
        # When using rotated boxes, only apply offsets on center.
        if boxes.size(-1) == 5:
            # Strictly, the maximum coordinates of the rotating box
            # (x,y,w,h,a) should be calculated by polygon coordinates.
            # But the conversion from rotated box to polygon will
            # slow down the speed.
            # So we use max(x,y) + max(w,h) as max coordinate
            # which is larger than polygon max coordinate
            # max(x1, y1, x2, y2,x3, y3, x4, y4)
            max_coordinate = boxes[..., :2].max() + boxes[..., 2:4].max()
            offsets = idxs.to(boxes) * (
                max_coordinate + torch.tensor(1).to(boxes))
            boxes_ctr_for_nms = boxes[..., :2] + offsets[:, None]
            boxes_for_nms = torch.cat([boxes_ctr_for_nms, boxes[..., 2:5]],
                                      dim=-1)
        else:
            max_coordinate = boxes.max()
            offsets = idxs.to(boxes) * (
                max_coordinate + torch.tensor(1).to(boxes))
            boxes_for_nms = boxes + offsets[:, None]

    nms_op = nms_cfg_.pop('type', 'nms')
    if isinstance(nms_op, str):
        nms_op = eval(nms_op)

    split_thr = nms_cfg_.pop('split_thr', 10000)
    # Won't split to multiple nms nodes when exporting to onnx
    if boxes_for_nms.shape[0] < split_thr:
        dets, keep = nms_op(boxes_for_nms, scores, **nms_cfg_)
        boxes = boxes[keep]

        # This assumes `dets` has arbitrary dimensions where
        # the last dimension is score.
        # Currently it supports bounding boxes [x1, y1, x2, y2, score] or
        # rotated boxes [cx, cy, w, h, angle_radian, score].

        scores = dets[:, -1]
    else:
        max_num = nms_cfg_.pop('max_num', -1)
        total_mask = scores.new_zeros(scores.size(), dtype=torch.bool)
        # Some type of nms would reweight the score, such as SoftNMS
        scores_after_nms = scores.new_zeros(scores.size())
        for id in torch.unique(idxs):
            mask = (idxs == id).nonzero(as_tuple=False).view(-1)
            dets, keep = nms_op(boxes_for_nms[mask], scores[mask], **nms_cfg_)
            total_mask[mask[keep]] = True
            scores_after_nms[mask[keep]] = dets[:, -1]
        keep = total_mask.nonzero(as_tuple=False).view(-1)

        scores, inds = scores_after_nms[keep].sort(descending=True)
        keep = keep[inds]
        boxes = boxes[keep]

        if max_num > 0:
            keep = keep[:max_num]
            boxes = boxes[:max_num]
            scores = scores[:max_num]

    boxes = torch.cat([boxes, scores[:, None]], -1)
    return boxes, keep


def nms_match(dets: array_like_type,
              iou_threshold: float) -> List[array_like_type]:
    """Matched dets into different groups by NMS.

    NMS match is Similar to NMS but when a bbox is suppressed, nms match will
    record the indice of suppressed bbox and form a group with the indice of
    kept bbox. In each group, indice is sorted as score order.

    Args:
        dets (torch.Tensor | np.ndarray): Det boxes with scores, shape (N, 5).
        iou_threshold (float): IoU thresh for NMS.

    Returns:
        list[torch.Tensor | np.ndarray]: The outer list corresponds different
        matched group, the inner Tensor corresponds the indices for a group
        in score order.
    """
    if dets.shape[0] == 0:
        matched = []
    else:
        assert dets.shape[-1] == 5, 'inputs dets.shape should be (N, 5), ' \
                                    f'but get {dets.shape}'
        if isinstance(dets, Tensor):
            dets_t = dets.detach().cpu()
        else:
            dets_t = torch.from_numpy(dets)
        indata_list = [dets_t]
        indata_dict = {'iou_threshold': float(iou_threshold)}
        matched = ext_module.nms_match(*indata_list, **indata_dict)
        if torch.__version__ == 'parrots':
            matched = matched.tolist()  # type: ignore

    if isinstance(dets, Tensor):
        return [dets.new_tensor(m, dtype=torch.long) for m in matched]
    else:
        return [np.array(m, dtype=int) for m in matched]


def nms_rotated(dets: Tensor,
                scores: Tensor,
                iou_threshold: float,
                labels: Optional[Tensor] = None,
                clockwise: bool = True) -> Tuple[Tensor, Tensor]:
    """Performs non-maximum suppression (NMS) on the rotated boxes according to
    their intersection-over-union (IoU).

    Rotated NMS iteratively removes lower scoring rotated boxes which have an
    IoU greater than iou_threshold with another (higher scoring) rotated box.

    Args:
        dets (torch.Tensor):  Rotated boxes in shape (N, 5).
            They are expected to be in
            (x_ctr, y_ctr, width, height, angle_radian) format.
        scores (torch.Tensor): scores in shape (N, ).
        iou_threshold (float): IoU thresh for NMS.
        labels (torch.Tensor, optional): boxes' label in shape (N,).
        clockwise (bool): flag indicating whether the positive angular
            orientation is clockwise. default True.
            `New in version 1.4.3.`

    Returns:
        tuple: kept dets(boxes and scores) and indice, which is always the
        same data type as the input.
    """
    if dets.shape[0] == 0:
        return dets, None
    if not clockwise:
        flip_mat = dets.new_ones(dets.shape[-1])
        flip_mat[-1] = -1
        dets_cw = dets * flip_mat
    else:
        dets_cw = dets
    multi_label = labels is not None
    if labels is None:
        input_labels = scores.new_empty(0, dtype=torch.int)
    else:
        input_labels = labels
    if dets.device.type in ('npu', 'mlu'):
        order = scores.new_empty(0, dtype=torch.long)
        if dets.device.type == 'npu':
            coefficient = 57.29578  # 180 / PI
            for i in range(dets.size()[0]):
                dets_cw[i][4] *= coefficient  # radians to angle
        keep_inds = ext_module.nms_rotated(dets_cw, scores, order, dets_cw,
                                           input_labels, iou_threshold,
                                           multi_label)
        dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
                         dim=1)
        return dets, keep_inds

    if multi_label:
        dets_wl = torch.cat((dets_cw, labels.unsqueeze(1)), 1)  # type: ignore
    else:
        dets_wl = dets_cw
    _, order = scores.sort(0, descending=True)
    dets_sorted = dets_wl.index_select(0, order)

    if torch.__version__ == 'parrots':
        keep_inds = ext_module.nms_rotated(
            dets_wl,
            scores,
            order,
            dets_sorted,
            input_labels,
            iou_threshold=iou_threshold,
            multi_label=multi_label)
    else:
        keep_inds = ext_module.nms_rotated(dets_wl, scores, order, dets_sorted,
                                           input_labels, iou_threshold,
                                           multi_label)
    dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
                     dim=1)
    return dets, keep_inds


def nms_quadri(dets: Tensor,
               scores: Tensor,
               iou_threshold: float,
               labels: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
    """Performs non-maximum suppression (NMS) on the quadrilateral boxes
    according to their intersection-over-union (IoU).

    Quadri NMS iteratively removes lower scoring quadrilateral boxes
    which have an IoU greater than iou_threshold with another (higher
    scoring) quadrilateral box.

    Args:
        dets (torch.Tensor):  Quadri boxes in shape (N, 8).
            They are expected to be in
            (x1, y1, ..., x4, y4) format.
        scores (torch.Tensor): scores in shape (N, ).
        iou_threshold (float): IoU thresh for NMS.
        labels (torch.Tensor, optional): boxes' label in shape (N,).

    Returns:
        tuple: kept dets(boxes and scores) and indice, which is always the
        same data type as the input.
    """
    if dets.shape[0] == 0:
        return dets, None

    multi_label = labels is not None
    if multi_label:
        dets_with_lables = \
            torch.cat((dets, labels.unsqueeze(1)), 1)  # type: ignore
    else:
        dets_with_lables = dets
    _, order = scores.sort(0, descending=True)
    dets_sorted = dets_with_lables.index_select(0, order)

    keep_inds = ext_module.nms_quadri(dets_with_lables, scores, order,
                                      dets_sorted, iou_threshold, multi_label)
    dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
                     dim=1)
    return dets, keep_inds