File size: 17,280 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from mmengine.logging import print_log
from mmengine.registry import MODELS
from mmengine.utils import deprecated_api_warning
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair, _single

from mmcv.utils import IS_MLU_AVAILABLE
from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext',
    ['modulated_deform_conv_forward', 'modulated_deform_conv_backward'])


class ModulatedDeformConv2dFunction(Function):

    @staticmethod
    def symbolic(g, input, offset, mask, weight, bias, stride, padding,
                 dilation, groups, deform_groups):
        input_tensors = [input, offset, mask, weight]
        if bias is not None:
            input_tensors.append(bias)
        return g.op(
            'mmcv::MMCVModulatedDeformConv2d',
            *input_tensors,
            stride_i=stride,
            padding_i=padding,
            dilation_i=dilation,
            groups_i=groups,
            deform_groups_i=deform_groups)

    @staticmethod
    def _calculate_sort_index(kernel_h, kernel_w, deformable_group):
        split_num = deformable_group * 2 * kernel_h * kernel_w
        sort_index = list(range(split_num))
        sort_index_fp = (sort_index[1::2] + sort_index[::2])
        sort_index_bp_dict = {i: idx for idx, i in enumerate(sort_index_fp)}
        sort_index_bp = [sort_index_bp_dict[i] for i in sort_index]
        sort_index_fp = torch.IntTensor(sort_index_fp)
        sort_index_bp = torch.IntTensor(sort_index_bp)
        sort_index_fp = sort_index_fp.npu()
        sort_index_bp = sort_index_bp.npu()
        return sort_index_fp, sort_index_bp

    @staticmethod
    def _npu_forward(ctx, input_tensor, offset, mask, weight, bias):
        _, _, kernel_h, kernel_w = weight.shape
        conv2d_bias = bias if len(bias) > 0 else None
        sort_index_fp, sort_index_bp = \
            ModulatedDeformConv2dFunction._calculate_sort_index(
                kernel_w, kernel_h, ctx.deform_groups)
        select_offset = offset.index_select(1, sort_index_fp)
        offset_all = torch.cat([select_offset, mask], dim=1)
        output, offset_out = torch.npu_deformable_conv2d(
            input_tensor,
            weight,
            offset_all,
            conv2d_bias,
            kernel_size=[kernel_w, kernel_h],
            stride=[1, 1, ctx.stride[0], ctx.stride[1]],
            padding=[
                ctx.padding[0], ctx.padding[0], ctx.padding[1], ctx.padding[1]
            ],
            dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
            groups=ctx.groups,
            deformable_groups=ctx.deform_groups,
            modulated=True)
        if weight.requires_grad or mask.requires_grad or offset.requires_grad \
                or input_tensor.requires_grad:
            ctx.save_for_backward(input_tensor, weight, offset_out, offset_all,
                                  sort_index_bp)
        return output

    @staticmethod
    def _npu_backward(ctx, grad_output):
        input_tensor, weight, offset_out, offset_all, sort_index_bp = \
            ctx.saved_tensors
        grad_input, grad_weight, grad_offset_all, grad_bias = \
            torch.npu_deformable_conv2dbk(
                input_tensor, grad_output, offset_out, weight, offset_all,
                kernel_size=[weight.shape[3], weight.shape[2]],
                stride=[1, 1, ctx.stride[0], ctx.stride[1]],
                padding=[ctx.padding[0], ctx.padding[0], ctx.padding[1],
                         ctx.padding[1]],
                dilation=[1, 1, ctx.dilation[0], ctx.dilation[1]],
                groups=ctx.groups, deformable_groups=ctx.deform_groups,
                modulated=True)
        grad_offset = grad_offset_all.index_select(1, sort_index_bp)
        grad_mask = grad_offset_all[:, grad_offset.shape[1]:, :, :]
        if not ctx.with_bias:
            grad_bias = None
        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
                None, None, None, None, None, None, None, None)

    @staticmethod
    def forward(ctx,
                input: torch.Tensor,
                offset: torch.Tensor,
                mask: torch.Tensor,
                weight: nn.Parameter,
                bias: Optional[nn.Parameter] = None,
                stride: int = 1,
                padding: int = 0,
                dilation: int = 1,
                groups: int = 1,
                deform_groups: int = 1) -> torch.Tensor:
        if input is not None and input.dim() != 4:
            raise ValueError(
                f'Expected 4D tensor as input, got {input.dim()}D tensor \
                  instead.')
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.groups = groups
        ctx.deform_groups = deform_groups
        ctx.with_bias = bias is not None
        ctx.device = input.device.type
        if not ctx.with_bias:
            bias = input.new_empty(0)  # fake tensor
        # When pytorch version >= 1.6.0, amp is adopted for fp16 mode;
        # amp won't cast the type of model (float32), but "offset" is cast
        # to float16 by nn.Conv2d automatically, leading to the type
        # mismatch with input (when it is float32) or weight.
        # The flag for whether to use fp16 or amp is the type of "offset",
        # we cast weight and input to temporarily support fp16 and amp
        # whatever the pytorch version is.
        input = input.type_as(offset)
        weight = weight.type_as(input)
        bias = bias.type_as(input)  # type: ignore
        mask = mask.type_as(input)
        if ctx.device == 'npu':
            output = ModulatedDeformConv2dFunction._npu_forward(
                ctx, input, offset, mask, weight, bias)
            return output
        ctx.save_for_backward(input, offset, mask, weight, bias)
        output = input.new_empty([
            int(i) for i in ModulatedDeformConv2dFunction._output_size(
                ctx, input, weight)
        ])
        ctx._bufs = [input.new_empty(0), input.new_empty(0)]
        ext_module.modulated_deform_conv_forward(
            input,
            weight,
            bias,
            ctx._bufs[0],
            offset,
            mask,
            output,
            ctx._bufs[1],
            kernel_h=weight.size(2),
            kernel_w=weight.size(3),
            stride_h=ctx.stride[0],
            stride_w=ctx.stride[1],
            pad_h=ctx.padding[0],
            pad_w=ctx.padding[1],
            dilation_h=ctx.dilation[0],
            dilation_w=ctx.dilation[1],
            group=ctx.groups,
            deformable_group=ctx.deform_groups,
            with_bias=ctx.with_bias)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output: torch.Tensor) -> tuple:
        if ctx.device == 'npu':
            return ModulatedDeformConv2dFunction._npu_backward(
                ctx, grad_output)
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input = torch.zeros_like(input)
        grad_offset = torch.zeros_like(offset)
        grad_mask = torch.zeros_like(mask)
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(bias)
        grad_output = grad_output.contiguous()
        ext_module.modulated_deform_conv_backward(
            input,
            weight,
            bias,
            ctx._bufs[0],
            offset,
            mask,
            ctx._bufs[1],
            grad_input,
            grad_weight,
            grad_bias,
            grad_offset,
            grad_mask,
            grad_output,
            kernel_h=weight.size(2),
            kernel_w=weight.size(3),
            stride_h=ctx.stride[0],
            stride_w=ctx.stride[1],
            pad_h=ctx.padding[0],
            pad_w=ctx.padding[1],
            dilation_h=ctx.dilation[0],
            dilation_w=ctx.dilation[1],
            group=ctx.groups,
            deformable_group=ctx.deform_groups,
            with_bias=ctx.with_bias)
        if not ctx.with_bias:
            grad_bias = None

        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
                None, None, None, None, None)

    @staticmethod
    def _output_size(ctx, input, weight):
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
            pad = ctx.padding[d]
            kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = ctx.stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError(
                'convolution input is too small (output would be ' +
                'x'.join(map(str, output_size)) + ')')
        return output_size


modulated_deform_conv2d = ModulatedDeformConv2dFunction.apply


class ModulatedDeformConv2d(nn.Module):

    @deprecated_api_warning({'deformable_groups': 'deform_groups'},
                            cls_name='ModulatedDeformConv2d')
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int]],
                 stride: int = 1,
                 padding: int = 0,
                 dilation: int = 1,
                 groups: int = 1,
                 deform_groups: int = 1,
                 bias: Union[bool, str] = True):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.deform_groups = deform_groups
        # enable compatibility with nn.Conv2d
        self.transposed = False
        self.output_padding = _single(0)

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels // groups,
                         *self.kernel_size))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)
        self.init_weights()

    def init_weights(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.zero_()

    def forward(self, x: torch.Tensor, offset: torch.Tensor,
                mask: torch.Tensor) -> torch.Tensor:
        return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
                                       self.stride, self.padding,
                                       self.dilation, self.groups,
                                       self.deform_groups)


@MODELS.register_module('DCNv2')
class ModulatedDeformConv2dPack(ModulatedDeformConv2d):
    """A ModulatedDeformable Conv Encapsulation that acts as normal Conv
    layers.

    Args:
        in_channels (int): Same as nn.Conv2d.
        out_channels (int): Same as nn.Conv2d.
        kernel_size (int or tuple[int]): Same as nn.Conv2d.
        stride (int): Same as nn.Conv2d, while tuple is not supported.
        padding (int): Same as nn.Conv2d, while tuple is not supported.
        dilation (int): Same as nn.Conv2d, while tuple is not supported.
        groups (int): Same as nn.Conv2d.
        bias (bool or str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
            False.
    """

    _version = 2

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_offset = nn.Conv2d(
            self.in_channels,
            self.deform_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            bias=True)
        self.init_weights()

    def init_weights(self) -> None:
        super().init_weights()
        if hasattr(self, 'conv_offset'):
            self.conv_offset.weight.data.zero_()
            self.conv_offset.bias.data.zero_()

    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore
        out = self.conv_offset(x)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
                                       self.stride, self.padding,
                                       self.dilation, self.groups,
                                       self.deform_groups)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)

        if version is None or version < 2:
            # the key is different in early versions
            # In version < 2, ModulatedDeformConvPack
            # loads previous benchmark models.
            if (prefix + 'conv_offset.weight' not in state_dict
                    and prefix[:-1] + '_offset.weight' in state_dict):
                state_dict[prefix + 'conv_offset.weight'] = state_dict.pop(
                    prefix[:-1] + '_offset.weight')
            if (prefix + 'conv_offset.bias' not in state_dict
                    and prefix[:-1] + '_offset.bias' in state_dict):
                state_dict[prefix +
                           'conv_offset.bias'] = state_dict.pop(prefix[:-1] +
                                                                '_offset.bias')

        if version is not None and version > 1:
            print_log(
                f'ModulatedDeformConvPack {prefix.rstrip(".")} is upgraded to '
                'version 2.',
                logger='current')

        super()._load_from_state_dict(state_dict, prefix, local_metadata,
                                      strict, missing_keys, unexpected_keys,
                                      error_msgs)


if IS_MLU_AVAILABLE:
    import torchvision
    from mmengine.utils import digit_version
    from torchvision.ops import deform_conv2d as tv_deform_conv2d

    @MODELS.register_module('DCNv2', force=True)
    class ModulatedDeformConv2dPack_MLU(ModulatedDeformConv2d):
        """This class is the DCNv2 implementation of the MLU device.

        The MLU backend support of the operator has been implemented
        in torchvision. The mmcv registration mechanism is used for
        multiplexing here. The torchvision implementation of DCNv2 is called.
        Args:
            in_channels (int): Same as nn.Conv2d.
            out_channels (int): Same as nn.Conv2d.
            kernel_size (int or tuple[int]): Same as nn.Conv2d.
            stride (int): Same as nn.Conv2d, while tuple is not supported.
            padding (int): Same as nn.Conv2d, while tuple is not supported.
            dilation (int): Same as nn.Conv2d, while tuple is not supported.
            groups (int): Same as nn.Conv2d.
            bias (bool or str): If specified as `auto`, it will be decided by
                the norm_cfg. Bias will be set as True if norm_cfg is None,
                otherwise False.
        """

        def __init__(self, *args, **kwargs):
            assert digit_version(torchvision.__version__) >= digit_version(
                '0.10.0a0'), 'the version of torchvision should be >= 0.10.0'
            super().__init__(*args, **kwargs)
            self.conv_offset = nn.Conv2d(
                self.in_channels,
                self.deform_groups * 3 * self.kernel_size[0] *
                self.kernel_size[1],
                kernel_size=self.kernel_size,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                bias=True)
            self.init_weights()

        def init_weights(self):
            super().init_weights()
            if hasattr(self, 'conv_offset'):
                self.conv_offset.weight.data.zero_()
                self.conv_offset.bias.data.zero_()

        def forward(self, x):
            out = self.conv_offset(x)
            o1, o2, mask = torch.chunk(out, 3, dim=1)
            offset = torch.cat((o1, o2), dim=1)
            mask = torch.sigmoid(mask)
            x = x.type_as(offset)
            weight = self.weight.type_as(x)
            mask = mask.type_as(x)
            return tv_deform_conv2d(
                x,
                offset,
                weight,
                bias=self.bias,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                mask=mask)