Spaces:
Build error
Build error
File size: 8,294 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Optional
import torch
from torch import Tensor
from ..utils import ext_loader
ext_module = ext_loader.load_ext('_ext', [
'iou3d_boxes_overlap_bev_forward', 'iou3d_nms3d_forward',
'iou3d_nms3d_normal_forward'
])
def boxes_overlap_bev(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
"""Calculate boxes BEV overlap.
Args:
boxes_a (torch.Tensor): Input boxes a with shape (M, 7).
boxes_b (torch.Tensor): Input boxes b with shape (N, 7).
Returns:
torch.Tensor: BEV overlap result with shape (M, N).
"""
ans_overlap = boxes_a.new_zeros(
torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
ext_module.iou3d_boxes_overlap_bev_forward(boxes_a.contiguous(),
boxes_b.contiguous(),
ans_overlap)
return ans_overlap
def boxes_iou3d(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
"""Calculate boxes 3D IoU.
Args:
boxes_a (torch.Tensor): Input boxes a with shape (M, 7).
boxes_b (torch.Tensor): Input boxes b with shape (N, 7).
Returns:
torch.Tensor: 3D IoU result with shape (M, N).
"""
assert boxes_a.shape[1] == boxes_b.shape[1] == 7,\
'Input boxes shape should be (N, 7)'
boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1)
boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1)
overlaps_bev = boxes_a.new_zeros(
torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
ext_module.iou3d_boxes_overlap_bev_forward(boxes_a.contiguous(),
boxes_b.contiguous(),
overlaps_bev)
max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
overlaps_3d = overlaps_bev * overlaps_h
vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1)
iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
return iou3d
def nms3d(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor:
"""3D NMS function GPU implementation (for BEV boxes).
Args:
boxes (torch.Tensor): Input boxes with the shape of (N, 7)
([x, y, z, dx, dy, dz, heading]).
scores (torch.Tensor): Scores of boxes with the shape of (N).
iou_threshold (float): Overlap threshold of NMS.
Returns:
torch.Tensor: Indexes after NMS.
"""
assert boxes.size(1) == 7, 'Input boxes shape should be (N, 7)'
order = scores.sort(0, descending=True)[1]
boxes = boxes[order].contiguous()
keep = boxes.new_zeros(boxes.size(0), dtype=torch.long)
num_out = boxes.new_zeros(size=(), dtype=torch.long)
ext_module.iou3d_nms3d_forward(
boxes, keep, num_out, nms_overlap_thresh=iou_threshold)
keep = order[keep[:num_out].to(boxes.device)].contiguous()
return keep
def nms3d_normal(boxes: Tensor, scores: Tensor,
iou_threshold: float) -> Tensor:
"""Normal 3D NMS function GPU implementation. The overlap of two boxes for
IoU calculation is defined as the exact overlapping area of the two boxes
WITH their yaw angle set to 0.
Args:
boxes (torch.Tensor): Input boxes with shape (N, 7).
([x, y, z, dx, dy, dz, heading]).
scores (torch.Tensor): Scores of predicted boxes with shape (N).
iou_threshold (float): Overlap threshold of NMS.
Returns:
torch.Tensor: Remaining indices with scores in descending order.
"""
assert boxes.shape[1] == 7, 'Input boxes shape should be (N, 7)'
order = scores.sort(0, descending=True)[1]
boxes = boxes[order].contiguous()
keep = boxes.new_zeros(boxes.size(0), dtype=torch.long)
num_out = boxes.new_zeros(size=(), dtype=torch.long)
ext_module.iou3d_nms3d_normal_forward(
boxes, keep, num_out, nms_overlap_thresh=iou_threshold)
return order[keep[:num_out].to(boxes.device)].contiguous()
def _xyxyr2xywhr(boxes: Tensor) -> Tensor:
"""Convert [x1, y1, x2, y2, heading] box to [x, y, dx, dy, heading] box.
Args:
box (torch.Tensor): Input boxes with shape (N, 5).
Returns:
torch.Tensor: Converted boxes with shape (N, 7).
"""
warnings.warn(
'This function is deprecated and will be removed in the future.',
DeprecationWarning)
return torch.stack(
((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2,
boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1], boxes[:, 4]),
dim=-1)
def boxes_iou_bev(boxes_a: Tensor, boxes_b: Tensor) -> Tensor:
"""Calculate boxes IoU in the Bird's Eye View.
Args:
boxes_a (torch.Tensor): Input boxes a with shape (M, 5)
([x1, y1, x2, y2, ry]).
boxes_b (torch.Tensor): Input boxes b with shape (N, 5)
([x1, y1, x2, y2, ry]).
Returns:
torch.Tensor: IoU result with shape (M, N).
"""
from .box_iou_rotated import box_iou_rotated
warnings.warn(
'`iou3d.boxes_iou_bev` is deprecated and will be removed in'
' the future. Please, use `box_iou_rotated.box_iou_rotated`.',
DeprecationWarning)
return box_iou_rotated(_xyxyr2xywhr(boxes_a), _xyxyr2xywhr(boxes_b))
def nms_bev(boxes: Tensor,
scores: Tensor,
thresh: float,
pre_max_size: Optional[int] = None,
post_max_size: Optional[int] = None) -> Tensor:
"""NMS function GPU implementation (for BEV boxes).
The overlap of two boxes for IoU calculation is defined as the exact
overlapping area of the two boxes. In this function, one can also
set ``pre_max_size`` and ``post_max_size``.
Args:
boxes (torch.Tensor): Input boxes with the shape of (N, 5)
([x1, y1, x2, y2, ry]).
scores (torch.Tensor): Scores of boxes with the shape of (N,).
thresh (float): Overlap threshold of NMS.
pre_max_size (int, optional): Max size of boxes before NMS.
Default: None.
post_max_size (int, optional): Max size of boxes after NMS.
Default: None.
Returns:
torch.Tensor: Indexes after NMS.
"""
from .nms import nms_rotated
warnings.warn(
'`iou3d.nms_bev` is deprecated and will be removed in'
' the future. Please, use `nms.nms_rotated`.', DeprecationWarning)
assert boxes.size(1) == 5, 'Input boxes shape should be (N, 5)'
order = scores.sort(0, descending=True)[1]
if pre_max_size is not None:
order = order[:pre_max_size]
boxes = _xyxyr2xywhr(boxes)[order]
scores = scores[order]
keep = nms_rotated(boxes, scores, thresh)[1]
keep = order[keep]
if post_max_size is not None:
keep = keep[:post_max_size]
return keep
def nms_normal_bev(boxes: Tensor, scores: Tensor, thresh: float) -> Tensor:
"""Normal NMS function GPU implementation (for BEV boxes).
The overlap of two boxes for IoU calculation is defined as the exact
overlapping area of the two boxes WITH their yaw angle set to 0.
Args:
boxes (torch.Tensor): Input boxes with shape (N, 5)
([x1, y1, x2, y2, ry]).
scores (torch.Tensor): Scores of predicted boxes with shape (N,).
thresh (float): Overlap threshold of NMS.
Returns:
torch.Tensor: Remaining indices with scores in descending order.
"""
from .nms import nms
warnings.warn(
'`iou3d.nms_normal_bev` is deprecated and will be removed in'
' the future. Please, use `nms.nms`.', DeprecationWarning)
assert boxes.shape[1] == 5, 'Input boxes shape should be (N, 5)'
return nms(boxes[:, :-1], scores, thresh)[1]
|