Spaces:
Build error
Build error
File size: 11,520 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/box_intersection_2d.py # noqa
# Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/oriented_iou_loss.py # noqa
from typing import Tuple
import torch
from torch import Tensor
from torch.autograd import Function
from ..utils import ext_loader
EPSILON = 1e-8
ext_module = ext_loader.load_ext('_ext',
['diff_iou_rotated_sort_vertices_forward'])
class SortVertices(Function):
@staticmethod
def forward(ctx, vertices, mask, num_valid):
idx = ext_module.diff_iou_rotated_sort_vertices_forward(
vertices, mask, num_valid)
if torch.__version__ != 'parrots':
ctx.mark_non_differentiable(idx)
return idx
@staticmethod
def backward(ctx, gradout):
return ()
def box_intersection(corners1: Tensor,
corners2: Tensor) -> Tuple[Tensor, Tensor]:
"""Find intersection points of rectangles.
Convention: if two edges are collinear, there is no intersection point.
Args:
corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
Returns:
Tuple:
- Tensor: (B, N, 4, 4, 2) Intersections.
- Tensor: (B, N, 4, 4) Valid intersections mask.
"""
# build edges from corners
# B, N, 4, 4: Batch, Box, edge, point
line1 = torch.cat([corners1, corners1[:, :, [1, 2, 3, 0], :]], dim=3)
line2 = torch.cat([corners2, corners2[:, :, [1, 2, 3, 0], :]], dim=3)
# duplicate data to pair each edges from the boxes
# (B, N, 4, 4) -> (B, N, 4, 4, 4) : Batch, Box, edge1, edge2, point
line1_ext = line1.unsqueeze(3)
line2_ext = line2.unsqueeze(2)
x1, y1, x2, y2 = line1_ext.split([1, 1, 1, 1], dim=-1)
x3, y3, x4, y4 = line2_ext.split([1, 1, 1, 1], dim=-1)
# math: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
numerator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
denumerator_t = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4)
t = denumerator_t / numerator
t[numerator == .0] = -1.
mask_t = (t > 0) & (t < 1) # intersection on line segment 1
denumerator_u = (x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3)
u = -denumerator_u / numerator
u[numerator == .0] = -1.
mask_u = (u > 0) & (u < 1) # intersection on line segment 2
mask = mask_t * mask_u
# overwrite with EPSILON. otherwise numerically unstable
t = denumerator_t / (numerator + EPSILON)
intersections = torch.stack([x1 + t * (x2 - x1), y1 + t * (y2 - y1)],
dim=-1)
intersections = intersections * mask.float().unsqueeze(-1)
return intersections, mask
def box1_in_box2(corners1: Tensor, corners2: Tensor) -> Tensor:
"""Check if corners of box1 lie in box2.
Convention: if a corner is exactly on the edge of the other box,
it's also a valid point.
Args:
corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
Returns:
Tensor: (B, N, 4) Intersection.
"""
# a, b, c, d - 4 vertices of box2
a = corners2[:, :, 0:1, :] # (B, N, 1, 2)
b = corners2[:, :, 1:2, :] # (B, N, 1, 2)
d = corners2[:, :, 3:4, :] # (B, N, 1, 2)
# ab, am, ad - vectors between corresponding vertices
ab = b - a # (B, N, 1, 2)
am = corners1 - a # (B, N, 4, 2)
ad = d - a # (B, N, 1, 2)
prod_ab = torch.sum(ab * am, dim=-1) # (B, N, 4)
norm_ab = torch.sum(ab * ab, dim=-1) # (B, N, 1)
prod_ad = torch.sum(ad * am, dim=-1) # (B, N, 4)
norm_ad = torch.sum(ad * ad, dim=-1) # (B, N, 1)
# NOTE: the expression looks ugly but is stable if the two boxes
# are exactly the same also stable with different scale of bboxes
cond1 = (prod_ab / norm_ab > -1e-6) * (prod_ab / norm_ab < 1 + 1e-6
) # (B, N, 4)
cond2 = (prod_ad / norm_ad > -1e-6) * (prod_ad / norm_ad < 1 + 1e-6
) # (B, N, 4)
return cond1 * cond2
def box_in_box(corners1: Tensor, corners2: Tensor) -> Tuple[Tensor, Tensor]:
"""Check if corners of two boxes lie in each other.
Args:
corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
Returns:
Tuple:
- Tensor: (B, N, 4) True if i-th corner of box1 is in box2.
- Tensor: (B, N, 4) True if i-th corner of box2 is in box1.
"""
c1_in_2 = box1_in_box2(corners1, corners2)
c2_in_1 = box1_in_box2(corners2, corners1)
return c1_in_2, c2_in_1
def build_vertices(corners1: Tensor, corners2: Tensor, c1_in_2: Tensor,
c2_in_1: Tensor, intersections: Tensor,
valid_mask: Tensor) -> Tuple[Tensor, Tensor]:
"""Find vertices of intersection area.
Args:
corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
c1_in_2 (Tensor): (B, N, 4) True if i-th corner of box1 is in box2.
c2_in_1 (Tensor): (B, N, 4) True if i-th corner of box2 is in box1.
intersections (Tensor): (B, N, 4, 4, 2) Intersections.
valid_mask (Tensor): (B, N, 4, 4) Valid intersections mask.
Returns:
Tuple:
- Tensor: (B, N, 24, 2) Vertices of intersection area;
only some elements are valid.
- Tensor: (B, N, 24) Mask of valid elements in vertices.
"""
# NOTE: inter has elements equals zero and has zeros gradient
# (masked by multiplying with 0); can be used as trick
B = corners1.size()[0]
N = corners1.size()[1]
# (B, N, 4 + 4 + 16, 2)
vertices = torch.cat(
[corners1, corners2,
intersections.view([B, N, -1, 2])], dim=2)
# Bool (B, N, 4 + 4 + 16)
mask = torch.cat([c1_in_2, c2_in_1, valid_mask.view([B, N, -1])], dim=2)
return vertices, mask
def sort_indices(vertices: Tensor, mask: Tensor) -> Tensor:
"""Sort indices.
Note:
why 9? the polygon has maximal 8 vertices.
+1 to duplicate the first element.
the index should have following structure:
(A, B, C, ... , A, X, X, X)
and X indicates the index of arbitrary elements in the last
16 (intersections not corners) with value 0 and mask False.
(cause they have zero value and zero gradient)
Args:
vertices (Tensor): (B, N, 24, 2) Box vertices.
mask (Tensor): (B, N, 24) Mask.
Returns:
Tensor: (B, N, 9) Sorted indices.
"""
num_valid = torch.sum(mask.int(), dim=2).int() # (B, N)
mean = torch.sum(
vertices * mask.float().unsqueeze(-1), dim=2,
keepdim=True) / num_valid.unsqueeze(-1).unsqueeze(-1)
vertices_normalized = vertices - mean # normalization makes sorting easier
return SortVertices.apply(vertices_normalized, mask, num_valid).long()
def calculate_area(idx_sorted: Tensor,
vertices: Tensor) -> Tuple[Tensor, Tensor]:
"""Calculate area of intersection.
Args:
idx_sorted (Tensor): (B, N, 9) Sorted vertex ids.
vertices (Tensor): (B, N, 24, 2) Vertices.
Returns:
Tuple:
- Tensor (B, N): Area of intersection.
- Tensor: (B, N, 9, 2) Vertices of polygon with zero padding.
"""
idx_ext = idx_sorted.unsqueeze(-1).repeat([1, 1, 1, 2])
selected = torch.gather(vertices, 2, idx_ext)
total = selected[:, :, 0:-1, 0] * selected[:, :, 1:, 1] \
- selected[:, :, 0:-1, 1] * selected[:, :, 1:, 0]
total = torch.sum(total, dim=2)
area = torch.abs(total) / 2
return area, selected
def oriented_box_intersection_2d(corners1: Tensor,
corners2: Tensor) -> Tuple[Tensor, Tensor]:
"""Calculate intersection area of 2d rotated boxes.
Args:
corners1 (Tensor): (B, N, 4, 2) First batch of boxes.
corners2 (Tensor): (B, N, 4, 2) Second batch of boxes.
Returns:
Tuple:
- Tensor (B, N): Area of intersection.
- Tensor (B, N, 9, 2): Vertices of polygon with zero padding.
"""
intersections, valid_mask = box_intersection(corners1, corners2)
c12, c21 = box_in_box(corners1, corners2)
vertices, mask = build_vertices(corners1, corners2, c12, c21,
intersections, valid_mask)
sorted_indices = sort_indices(vertices, mask)
return calculate_area(sorted_indices, vertices)
def box2corners(box: Tensor) -> Tensor:
"""Convert rotated 2d box coordinate to corners.
Args:
box (Tensor): (B, N, 5) with x, y, w, h, alpha.
Returns:
Tensor: (B, N, 4, 2) Corners.
"""
B = box.size()[0]
x, y, w, h, alpha = box.split([1, 1, 1, 1, 1], dim=-1)
x4 = box.new_tensor([0.5, -0.5, -0.5, 0.5]).to(box.device)
x4 = x4 * w # (B, N, 4)
y4 = box.new_tensor([0.5, 0.5, -0.5, -0.5]).to(box.device)
y4 = y4 * h # (B, N, 4)
corners = torch.stack([x4, y4], dim=-1) # (B, N, 4, 2)
sin = torch.sin(alpha)
cos = torch.cos(alpha)
row1 = torch.cat([cos, sin], dim=-1)
row2 = torch.cat([-sin, cos], dim=-1) # (B, N, 2)
rot_T = torch.stack([row1, row2], dim=-2) # (B, N, 2, 2)
rotated = torch.bmm(corners.view([-1, 4, 2]), rot_T.view([-1, 2, 2]))
rotated = rotated.view([B, -1, 4, 2]) # (B * N, 4, 2) -> (B, N, 4, 2)
rotated[..., 0] += x
rotated[..., 1] += y
return rotated
def diff_iou_rotated_2d(box1: Tensor, box2: Tensor) -> Tensor:
"""Calculate differentiable iou of rotated 2d boxes.
Args:
box1 (Tensor): (B, N, 5) First box.
box2 (Tensor): (B, N, 5) Second box.
Returns:
Tensor: (B, N) IoU.
"""
corners1 = box2corners(box1)
corners2 = box2corners(box2)
intersection, _ = oriented_box_intersection_2d(corners1,
corners2) # (B, N)
area1 = box1[:, :, 2] * box1[:, :, 3]
area2 = box2[:, :, 2] * box2[:, :, 3]
union = area1 + area2 - intersection
iou = intersection / union
return iou
def diff_iou_rotated_3d(box3d1: Tensor, box3d2: Tensor) -> Tensor:
"""Calculate differentiable iou of rotated 3d boxes.
Args:
box3d1 (Tensor): (B, N, 3+3+1) First box (x,y,z,w,h,l,alpha).
box3d2 (Tensor): (B, N, 3+3+1) Second box (x,y,z,w,h,l,alpha).
Returns:
Tensor: (B, N) IoU.
"""
box1 = box3d1[..., [0, 1, 3, 4, 6]] # 2d box
box2 = box3d2[..., [0, 1, 3, 4, 6]]
corners1 = box2corners(box1)
corners2 = box2corners(box2)
intersection, _ = oriented_box_intersection_2d(corners1, corners2)
zmax1 = box3d1[..., 2] + box3d1[..., 5] * 0.5
zmin1 = box3d1[..., 2] - box3d1[..., 5] * 0.5
zmax2 = box3d2[..., 2] + box3d2[..., 5] * 0.5
zmin2 = box3d2[..., 2] - box3d2[..., 5] * 0.5
z_overlap = (torch.min(zmax1, zmax2) -
torch.max(zmin1, zmin2)).clamp_(min=0.)
intersection_3d = intersection * z_overlap
volume1 = box3d1[..., 3] * box3d1[..., 4] * box3d1[..., 5]
volume2 = box3d2[..., 3] * box3d2[..., 4] * box3d2[..., 5]
union_3d = volume1 + volume2 - intersection_3d
return intersection_3d / union_3d
|