File size: 21,266 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
// Copyright (c) OpenMMLab. All rights reserved
#include "pytorch_cpp_helper.hpp"
#include "pytorch_device_registry.hpp"

void deformable_im2col_impl(Tensor data_im, Tensor data_offset,
                            const int channels, const int height,
                            const int width, const int ksize_h,
                            const int ksize_w, const int pad_h, const int pad_w,
                            const int stride_h, const int stride_w,
                            const int dilation_h, const int dilation_w,
                            const int parallel_imgs, const int deformable_group,
                            Tensor data_col) {
  DISPATCH_DEVICE_IMPL(deformable_im2col_impl, data_im, data_offset, channels,
                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
                       stride_w, dilation_h, dilation_w, parallel_imgs,
                       deformable_group, data_col);
}

void deformable_col2im_impl(Tensor data_col, Tensor data_offset,
                            const int channels, const int height,
                            const int width, const int ksize_h,
                            const int ksize_w, const int pad_h, const int pad_w,
                            const int stride_h, const int stride_w,
                            const int dilation_h, const int dilation_w,
                            const int parallel_imgs, const int deformable_group,
                            Tensor grad_im) {
  DISPATCH_DEVICE_IMPL(deformable_col2im_impl, data_col, data_offset, channels,
                       height, width, ksize_h, ksize_w, pad_h, pad_w, stride_h,
                       stride_w, dilation_h, dilation_w, parallel_imgs,
                       deformable_group, grad_im);
}

void deformable_col2im_coord_impl(
    Tensor data_col, Tensor data_im, Tensor data_offset, const int channels,
    const int height, const int width, const int ksize_h, const int ksize_w,
    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    const int dilation_h, const int dilation_w, const int parallel_imgs,
    const int deformable_group, Tensor grad_offset) {
  DISPATCH_DEVICE_IMPL(deformable_col2im_coord_impl, data_col, data_im,
                       data_offset, channels, height, width, ksize_h, ksize_w,
                       pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
                       parallel_imgs, deformable_group, grad_offset);
}

void deform_conv_shape_check(at::Tensor input, at::Tensor offset,
                             at::Tensor *gradOutput, at::Tensor weight, int kH,
                             int kW, int dH, int dW, int padH, int padW,
                             int dilationH, int dilationW, int group,
                             int deformable_group) {
  TORCH_CHECK(
      weight.ndimension() == 4,
      "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, but got: %s",
      weight.ndimension());

  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");

  TORCH_CHECK(kW > 0 && kH > 0,
              "kernel size should be greater than zero, but got kH: %d kW: %d",
              kH, kW);

  TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
              "kernel size should be consistent with weight, ",
              "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d",
              kH, kW, weight.size(2), weight.size(3));

  TORCH_CHECK(dW > 0 && dH > 0,
              "stride should be greater than zero, but got dH: %d dW: %d", dH,
              dW);

  TORCH_CHECK(
      dilationW > 0 && dilationH > 0,
      "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
      dilationH, dilationW);

  int ndim = input.ndimension();
  int dimf = 0;
  int dimh = 1;
  int dimw = 2;

  if (ndim == 4) {
    dimf++;
    dimh++;
    dimw++;
  }

  TORCH_CHECK(ndim == 3 || ndim == 4,
              "3D or 4D input tensor expected but got: %s", ndim);

  long nInputPlane = weight.size(1) * group;
  long inputHeight = input.size(dimh);
  long inputWidth = input.size(dimw);
  long nOutputPlane = weight.size(0);
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;

  TORCH_CHECK(nInputPlane % deformable_group == 0,
              "input channels must divide deformable group size");

  if (outputWidth < 1 || outputHeight < 1)
    AT_ERROR(
        "Given input size: (%ld x %ld x %ld). "
        "Calculated output size: (%ld x %ld x %ld). Output size is too small",
        nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
        outputWidth);

  TORCH_CHECK(input.size(1) == nInputPlane,
              "invalid number of input planes, expected: %d, but got: %d",
              nInputPlane, input.size(1));

  TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
              "input image is smaller than kernel");

  TORCH_CHECK(
      (offset.size(2) == outputHeight && offset.size(3) == outputWidth),
      "invalid spatial size of offset, expected height: %d width: %d, but "
      "got height: %d width: %d",
      outputHeight, outputWidth, offset.size(2), offset.size(3));

  TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
              "invalid number of channels of offset");

  if (gradOutput != NULL) {
    TORCH_CHECK(
        gradOutput->size(dimf) == nOutputPlane,
        "invalid number of gradOutput planes, expected: %d, but got: %d",
        nOutputPlane, gradOutput->size(dimf));

    TORCH_CHECK(
        (gradOutput->size(dimh) == outputHeight &&
         gradOutput->size(dimw) == outputWidth),
        "invalid size of gradOutput, expected height: %d width: %d , but "
        "got height: %d width: %d",
        outputHeight, outputWidth, gradOutput->size(dimh),
        gradOutput->size(dimw));
  }
}

void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
                         Tensor output, Tensor columns, Tensor ones, int kW,
                         int kH, int dW, int dH, int padW, int padH,
                         int dilationW, int dilationH, int group,
                         int deformable_group, int im2col_step) {
  if (input.device().is_cuda()) {
#ifdef MMCV_WITH_CUDA
    CHECK_CUDA_INPUT(input);
    CHECK_CUDA_INPUT(offset);
    CHECK_CUDA_INPUT(weight);
    CHECK_CUDA_INPUT(output);
    CHECK_CUDA_INPUT(columns);
    CHECK_CUDA_INPUT(ones);
#else
    AT_ERROR("DeformConv is not compiled with GPU support");
#endif
  } else {
    CHECK_CPU_INPUT(input);
    CHECK_CPU_INPUT(offset);
    CHECK_CPU_INPUT(weight);
    CHECK_CPU_INPUT(output);
    CHECK_CPU_INPUT(columns);
    CHECK_CPU_INPUT(ones);
  }

  deform_conv_shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH,
                          padW, dilationH, dilationW, group, deformable_group);
  at::DeviceGuard guard(input.device());

  int batch = 1;
  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input.unsqueeze_(0);
    offset.unsqueeze_(0);
  }

  // todo: assert batchsize dividable by im2col_step

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = weight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");

  output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
                        outputHeight, outputWidth});
  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  if (ones.ndimension() != 2 ||
      ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
    ones = at::ones({outputHeight, outputWidth}, input.options());
  }

  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  Tensor output_buffer = at::zeros({batchSize / im2col_step, nOutputPlane,
                                    im2col_step * outputHeight, outputWidth},
                                   output.options());

  output_buffer = output_buffer.view(
      {output_buffer.size(0), group, output_buffer.size(1) / group,
       output_buffer.size(2), output_buffer.size(3)});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                           dilationW, im2col_step, deformable_group, columns);

    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});

    for (int g = 0; g < group; g++) {
      output_buffer[elt][g] = output_buffer[elt][g]
                                  .flatten(1)
                                  .addmm_(weight[g].flatten(1), columns[g])
                                  .view_as(output_buffer[elt][g]);
    }
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
                          weight.size(3), weight.size(4)});
  }

  output_buffer = output_buffer.view(
      {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
       output_buffer.size(3), output_buffer.size(4)});

  output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
                                      im2col_step, outputHeight, outputWidth});
  output_buffer.transpose_(1, 2);
  output.copy_(output_buffer);
  output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    output = output.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
  }
}

void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
                                Tensor gradInput, Tensor gradOffset,
                                Tensor weight, Tensor columns, int kW, int kH,
                                int dW, int dH, int padW, int padH,
                                int dilationW, int dilationH, int group,
                                int deformable_group, int im2col_step) {
  if (input.device().is_cuda()) {
#ifdef MMCV_WITH_CUDA
    CHECK_CUDA_INPUT(input);
    CHECK_CUDA_INPUT(offset);
    CHECK_CUDA_INPUT(gradOutput);
    CHECK_CUDA_INPUT(gradInput);
    CHECK_CUDA_INPUT(gradOffset);
    CHECK_CUDA_INPUT(weight);
    CHECK_CUDA_INPUT(columns);
#else
    AT_ERROR("DeformConv is not compiled with GPU support");
#endif
  } else {
    CHECK_CPU_INPUT(input);
    CHECK_CPU_INPUT(offset);
    CHECK_CPU_INPUT(gradOutput);
    CHECK_CPU_INPUT(gradInput);
    CHECK_CPU_INPUT(gradOffset);
    CHECK_CPU_INPUT(weight);
    CHECK_CPU_INPUT(columns);
  }
  deform_conv_shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW,
                          padH, padW, dilationH, dilationW, group,
                          deformable_group);

  at::DeviceGuard guard(input.device());

  int batch = 1;
  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input = input.view({1, input.size(0), input.size(1), input.size(2)});
    offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
    gradOutput = gradOutput.view(
        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
  }

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = weight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  // change order of grad output
  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
                                nOutputPlane, outputHeight, outputWidth});
  gradOutput.transpose_(1, 2);

  gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
                              inputHeight, inputWidth});
  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
                                deformable_group * 2 * kH * kW, outputHeight,
                                outputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    // divide into groups
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});
    gradOutput = gradOutput.view(
        {gradOutput.size(0), group, gradOutput.size(1) / group,
         gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});

    for (int g = 0; g < group; g++) {
      columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
                                     gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
    }

    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    gradOutput = gradOutput.view(
        {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
         gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});

    deformable_col2im_coord_impl(columns, input[elt], offset[elt], nInputPlane,
                                 inputHeight, inputWidth, kH, kW, padH, padW,
                                 dH, dW, dilationH, dilationW, im2col_step,
                                 deformable_group, gradOffset[elt]);

    deformable_col2im_impl(columns, offset[elt], nInputPlane, inputHeight,
                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                           dilationW, im2col_step, deformable_group,
                           gradInput[elt]);

    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
                          weight.size(3), weight.size(4)});
  }

  gradOutput.transpose_(1, 2);
  gradOutput =
      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  gradOffset = gradOffset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
    gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    gradOffset =
        gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
  }
}

void deform_conv_backward_parameters(Tensor input, Tensor offset,
                                     Tensor gradOutput, Tensor gradWeight,
                                     Tensor columns, Tensor ones, int kW,
                                     int kH, int dW, int dH, int padW, int padH,
                                     int dilationW, int dilationH, int group,
                                     int deformable_group, float scale,
                                     int im2col_step) {
  if (input.device().is_cuda()) {
#ifdef MMCV_WITH_CUDA
    CHECK_CUDA_INPUT(input);
    CHECK_CUDA_INPUT(offset);
    CHECK_CUDA_INPUT(gradOutput);
    CHECK_CUDA_INPUT(gradWeight);
    CHECK_CUDA_INPUT(columns);
    CHECK_CUDA_INPUT(ones);
#else
    AT_ERROR("DeformConv is not compiled with GPU support");
#endif
  } else {
    CHECK_CPU_INPUT(input);
    CHECK_CPU_INPUT(offset);
    CHECK_CPU_INPUT(gradOutput);
    CHECK_CPU_INPUT(gradWeight);
    CHECK_CPU_INPUT(columns);
    CHECK_CPU_INPUT(ones);
  }

  deform_conv_shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH,
                          dW, padH, padW, dilationH, dilationW, group,
                          deformable_group);
  at::DeviceGuard guard(input.device());

  int batch = 1;

  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input = input.view(
        at::IntList({1, input.size(0), input.size(1), input.size(2)}));
    gradOutput = gradOutput.view(
        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
  }

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = gradWeight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");

  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
                                nOutputPlane, outputHeight, outputWidth});
  gradOutput.transpose_(1, 2);

  Tensor gradOutputBuffer = at::zeros_like(gradOutput);
  gradOutputBuffer =
      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
                             outputHeight, outputWidth});
  gradOutputBuffer = gradOutputBuffer.contiguous();
  gradOutputBuffer.copy_(gradOutput);
  gradOutputBuffer =
      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
                             im2col_step * outputHeight, outputWidth});

  gradOutput.transpose_(1, 2);
  gradOutput =
      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    deformable_im2col_impl(input[elt], offset[elt], nInputPlane, inputHeight,
                           inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                           dilationW, im2col_step, deformable_group, columns);

    // divide into group
    gradOutputBuffer = gradOutputBuffer.view(
        {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
         gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    gradWeight =
        gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
                         gradWeight.size(2), gradWeight.size(3)});

    for (int g = 0; g < group; g++) {
      gradWeight[g] = gradWeight[g]
                          .flatten(1)
                          .addmm_(gradOutputBuffer[elt][g].flatten(1),
                                  columns[g].transpose(1, 0), 1.0, scale)
                          .view_as(gradWeight[g]);
    }
    gradOutputBuffer = gradOutputBuffer.view(
        {gradOutputBuffer.size(0),
         gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
         gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
                                  gradWeight.size(2), gradWeight.size(3),
                                  gradWeight.size(4)});
  }

  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
  }
}