File size: 3,525 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Sequence, Tuple

import torch
from torch import Tensor
from torch.autograd import Function
from torch.autograd.function import once_differentiable

from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['chamfer_distance_forward', 'chamfer_distance_backward'])


class ChamferDistanceFunction(Function):
    """This is an implementation of the 2D Chamfer Distance.

    It has been used in the paper `Oriented RepPoints for Aerial Object
    Detection (CVPR 2022) <https://arxiv.org/abs/2105.11111>_`.
    """

    @staticmethod
    def forward(ctx, xyz1: Tensor, xyz2: Tensor) -> Sequence[Tensor]:
        """
        Args:
            xyz1 (Tensor): Point set with shape (B, N, 2).
            xyz2 (Tensor): Point set with shape (B, N, 2).

        Returns:
            Sequence[Tensor]:

                - dist1 (Tensor): Chamfer distance (xyz1 to xyz2) with
                    shape (B, N).
                - dist2 (Tensor): Chamfer distance (xyz2 to xyz1) with
                    shape (B, N).
                - idx1 (Tensor): Index of chamfer distance (xyz1 to xyz2)
                    with shape (B, N), which be used in compute gradient.
                - idx2 (Tensor): Index of chamfer distance (xyz2 to xyz2)
                    with shape (B, N), which be used in compute gradient.
        """
        batch_size, n, _ = xyz1.size()
        _, m, _ = xyz2.size()
        device = xyz1.device
        xyz1 = xyz1.contiguous()
        xyz2 = xyz2.contiguous()

        dist1 = torch.zeros(batch_size, n).to(device)
        dist2 = torch.zeros(batch_size, m).to(device)
        idx1 = torch.zeros(batch_size, n).type(torch.IntTensor).to(device)
        idx2 = torch.zeros(batch_size, m).type(torch.IntTensor).to(device)

        ext_module.chamfer_distance_forward(xyz1, xyz2, dist1, dist2, idx1,
                                            idx2)
        ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
        return dist1, dist2, idx1, idx2

    @staticmethod
    @once_differentiable
    def backward(ctx,
                 grad_dist1: Tensor,
                 grad_dist2: Tensor,
                 grad_idx1=None,
                 grad_idx2=None) -> Tuple[Tensor, Tensor]:
        """

        Args:
            grad_dist1 (Tensor): Gradient of chamfer distance
                (xyz1 to xyz2) with shape (B, N).
            grad_dist2 (Tensor): Gradient of chamfer distance
                (xyz2 to xyz1) with shape (B, N).

        Returns:
            Tuple[Tensor, Tensor]:

            - grad_xyz1 (Tensor): Gradient of the point set with shape \
                (B, N, 2).
            - grad_xyz2 (Tensor):Gradient of the point set with shape \
                (B, N, 2).
        """
        xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
        device = grad_dist1.device
        grad_dist1 = grad_dist1.contiguous()
        grad_dist2 = grad_dist2.contiguous()
        grad_xyz1 = torch.zeros(xyz1.size()).to(device)
        grad_xyz2 = torch.zeros(xyz2.size()).to(device)

        ext_module.chamfer_distance_backward(xyz1, xyz2, idx1, idx2,
                                             grad_dist1, grad_dist2, grad_xyz1,
                                             grad_xyz2)
        return grad_xyz1, grad_xyz2


chamfer_distance = ChamferDistanceFunction.apply