File size: 5,726 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', ['box_iou_rotated'])


def box_iou_rotated(bboxes1: torch.Tensor,
                    bboxes2: torch.Tensor,
                    mode: str = 'iou',
                    aligned: bool = False,
                    clockwise: bool = True) -> torch.Tensor:
    """Return intersection-over-union (Jaccard index) of boxes.

    Both sets of boxes are expected to be in
    (x_center, y_center, width, height, angle) format.

    If ``aligned`` is ``False``, then calculate the ious between each bbox
    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    bboxes1 and bboxes2.

    .. note::
        The operator assumes:

        1) The positive direction along x axis is left -> right.

        2) The positive direction along y axis is top -> down.

        3) The w border is in parallel with x axis when angle = 0.

        However, there are 2 opposite definitions of the positive angular
        direction, clockwise (CW) and counter-clockwise (CCW). MMCV supports
        both definitions and uses CW by default.

        Please set ``clockwise=False`` if you are using the CCW definition.

        The coordinate system when ``clockwise`` is ``True`` (default)

            .. code-block:: none

                0-------------------> x (0 rad)
                |  A-------------B
                |  |             |
                |  |     box     h
                |  |   angle=0   |
                |  D------w------C
                v
                y (pi/2 rad)

            In such coordination system the rotation matrix is

            .. math::
                \\begin{pmatrix}
                \\cos\\alpha & -\\sin\\alpha \\\\
                \\sin\\alpha & \\cos\\alpha
                \\end{pmatrix}

            The coordinates of the corner point A can be calculated as:

            .. math::
                P_A=
                \\begin{pmatrix} x_A \\\\ y_A\\end{pmatrix}
                =
                \\begin{pmatrix} x_{center} \\\\ y_{center}\\end{pmatrix} +
                \\begin{pmatrix}\\cos\\alpha & -\\sin\\alpha \\\\
                \\sin\\alpha & \\cos\\alpha\\end{pmatrix}
                \\begin{pmatrix} -0.5w \\\\ -0.5h\\end{pmatrix} \\\\
                =
                \\begin{pmatrix} x_{center}-0.5w\\cos\\alpha+0.5h\\sin\\alpha
                \\\\
                y_{center}-0.5w\\sin\\alpha-0.5h\\cos\\alpha\\end{pmatrix}


        The coordinate system when ``clockwise`` is ``False``

            .. code-block:: none

                0-------------------> x (0 rad)
                |  A-------------B
                |  |             |
                |  |     box     h
                |  |   angle=0   |
                |  D------w------C
                v
                y (-pi/2 rad)

            In such coordination system the rotation matrix is

            .. math::
                \\begin{pmatrix}
                \\cos\\alpha & \\sin\\alpha \\\\
                -\\sin\\alpha & \\cos\\alpha
                \\end{pmatrix}

            The coordinates of the corner point A can be calculated as:

            .. math::
                P_A=
                \\begin{pmatrix} x_A \\\\ y_A\\end{pmatrix}
                =
                \\begin{pmatrix} x_{center} \\\\ y_{center}\\end{pmatrix} +
                \\begin{pmatrix}\\cos\\alpha & \\sin\\alpha \\\\
                -\\sin\\alpha & \\cos\\alpha\\end{pmatrix}
                \\begin{pmatrix} -0.5w \\\\ -0.5h\\end{pmatrix} \\\\
                =
                \\begin{pmatrix} x_{center}-0.5w\\cos\\alpha-0.5h\\sin\\alpha
                \\\\
                y_{center}+0.5w\\sin\\alpha-0.5h\\cos\\alpha\\end{pmatrix}

    Args:
        boxes1 (torch.Tensor): rotated bboxes 1. It has shape (N, 5),
            indicating (x, y, w, h, theta) for each row. Note that theta is in
            radian.
        boxes2 (torch.Tensor): rotated bboxes 2. It has shape (M, 5),
            indicating (x, y, w, h, theta) for each row. Note that theta is in
            radian.
        mode (str): "iou" (intersection over union) or iof (intersection over
            foreground).
        clockwise (bool): flag indicating whether the positive angular
            orientation is clockwise. default True.
            `New in version 1.4.3.`

    Returns:
        torch.Tensor: Return the ious betweens boxes. If ``aligned`` is
        ``False``, the shape of ious is (N, M) else (N,).
    """
    assert mode in ['iou', 'iof']
    mode_dict = {'iou': 0, 'iof': 1}
    mode_flag = mode_dict[mode]
    rows = bboxes1.size(0)
    cols = bboxes2.size(0)
    if aligned:
        ious = bboxes1.new_zeros(rows)
    else:
        if bboxes1.device.type == 'mlu':
            ious = bboxes1.new_zeros([rows, cols])
        else:
            ious = bboxes1.new_zeros(rows * cols)
    if not clockwise:
        flip_mat = bboxes1.new_ones(bboxes1.shape[-1])
        flip_mat[-1] = -1
        bboxes1 = bboxes1 * flip_mat
        bboxes2 = bboxes2 * flip_mat
    if bboxes1.device.type == 'npu':
        scale_mat = bboxes1.new_ones(bboxes1.shape[-1])
        scale_mat[-1] = 1.0 / 0.01745329252
        bboxes1 = bboxes1 * scale_mat
        bboxes2 = bboxes2 * scale_mat
    bboxes1 = bboxes1.contiguous()
    bboxes2 = bboxes2.contiguous()
    ext_module.box_iou_rotated(
        bboxes1, bboxes2, ious, mode_flag=mode_flag, aligned=aligned)
    if not aligned:
        ious = ious.view(rows, cols)
    return ious