Spaces:
Build error
Build error
File size: 14,257 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from
# https://github.com/NVlabs/stylegan3/blob/main/torch_utils/ops/bias_act.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
# source: https://github.com/open-mmlab/mmediting/blob/dev-1.x/mmedit/models/editors/stylegan3/stylegan3_ops/ops/bias_act.py # noqa
"""Custom PyTorch ops for efficient bias and activation."""
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
from ..utils import ext_loader
ext_module = ext_loader.load_ext('_ext', ['bias_act'])
class EasyDict(dict):
"""Convenience class that behaves like a dict but allows access with the
attribute syntax."""
def __getattr__(self, name: str) -> Any:
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name: str, value: Any) -> None:
self[name] = value
def __delattr__(self, name: str) -> None:
del self[name]
activation_funcs = {
'linear':
EasyDict(
func=lambda x, **_: x,
def_alpha=0,
def_gain=1,
cuda_idx=1,
ref='',
has_2nd_grad=False),
'relu':
EasyDict(
func=lambda x, **_: torch.nn.functional.relu(x),
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=2,
ref='y',
has_2nd_grad=False),
'lrelu':
EasyDict(
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
def_alpha=0.2,
def_gain=np.sqrt(2),
cuda_idx=3,
ref='y',
has_2nd_grad=False),
'tanh':
EasyDict(
func=lambda x, **_: torch.tanh(x),
def_alpha=0,
def_gain=1,
cuda_idx=4,
ref='y',
has_2nd_grad=True),
'sigmoid':
EasyDict(
func=lambda x, **_: torch.sigmoid(x),
def_alpha=0,
def_gain=1,
cuda_idx=5,
ref='y',
has_2nd_grad=True),
'elu':
EasyDict(
func=lambda x, **_: torch.nn.functional.elu(x),
def_alpha=0,
def_gain=1,
cuda_idx=6,
ref='y',
has_2nd_grad=True),
'selu':
EasyDict(
func=lambda x, **_: torch.nn.functional.selu(x),
def_alpha=0,
def_gain=1,
cuda_idx=7,
ref='y',
has_2nd_grad=True),
'softplus':
EasyDict(
func=lambda x, **_: torch.nn.functional.softplus(x),
def_alpha=0,
def_gain=1,
cuda_idx=8,
ref='y',
has_2nd_grad=True),
'swish':
EasyDict(
func=lambda x, **_: torch.sigmoid(x) * x,
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=9,
ref='x',
has_2nd_grad=True),
}
_null_tensor = torch.empty([0])
def bias_act(input: torch.Tensor,
bias: Optional[torch.Tensor] = None,
dim: int = 1,
act: str = 'linear',
alpha: Optional[Union[float, int]] = None,
gain: Optional[float] = None,
clamp: Optional[float] = None,
use_custom_op: bool = True):
r"""Fused bias and activation function.
Adds `bias` to activation tensor `input`, and evaluates activation
function `act`, and scales the result by `gain`. Each of the steps is
optional.
In most cases, the fused op is considerably more efficient than performing
the same calculation using standard PyTorch ops. It supports first and
second order gradients, but not third order gradients.
Args:
input (torch.Tensor): Input activation tensor. Can be of any shape.
bias (torch.Tensor): Bias vector, or `None` to disable.
Must be a 1D tensor of the same type as `input`. The shape must
be known, and it must match the dimension of `input` corresponding
to `dim`. Defaults to None.
dim (int): The dimension in `input` corresponding to the elements of
`bias`. The value of `dim` is ignored if `b` is not specified.
Defaults to 1.
act (str): Name of the activation function to evaluate, or `"linear"`
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid",
"swish", etc. See `activation_funcs` for a full list. `None` is not
allowed. Defaults to `linear`.
alpha (float or int): Shape parameter for the activation
function, or `None` to use the default. Defaults to None.
gain (float): Scaling factor for the output tensor, or `None`
to use default. See `activation_funcs` for the default scaling of
each activation function. If unsure, consider specifying 1.
Defaults to None.
clamp (float): Clamp the output values to `[-clamp, +clamp]`,
or `None` to disable the clamping (default). Defaults to None.
use_custom_op (bool): Whether to use customized op.
Defaults to True.
Returns:
torch.Tensor: Tensor of the same shape and datatype as `input`.
"""
assert isinstance(input, torch.Tensor)
if use_custom_op and input.is_cuda:
return _bias_act_cuda(
dim=dim, act=act, alpha=alpha, gain=gain,
clamp=clamp).apply(input, bias)
return _bias_act_ref(
input=input,
bias=bias,
dim=dim,
act=act,
alpha=alpha,
gain=gain,
clamp=clamp)
def _bias_act_ref(input: torch.Tensor,
bias: Optional[torch.Tensor] = None,
dim: int = 1,
act: str = 'linear',
alpha: Optional[Union[float, int]] = None,
gain: Optional[float] = None,
clamp: Optional[float] = None):
"""Slow reference implementation of `bias_act()` using standard PyTorch
ops.
Adds `bias` to activation tensor `input`, and evaluates activation
function `act`, and scales the result by `gain`. Each of the steps is
optional.
In most cases, the fused op is considerably more efficient than performing
the same calculation using standard PyTorch ops. It supports first and
second order gradients, but not third order gradients.
Args:
input (torch.Tensor): Input activation tensor. Can be of any shape.
bias (torch.Tensor): Bias vector, or `None` to disable.
Must be a 1D tensor of the same type as `input`. The shape must
be known, and it must match the dimension of `input` corresponding
to `dim`. Defaults to None.
dim (int): The dimension in `input` corresponding to the elements of
`bias`. The value of `dim` is ignored if `b` is not specified.
Defaults to 1.
act (str): Name of the activation function to evaluate, or `"linear"`
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid",
"swish", etc. See `activation_funcs` for a full list. `None` is not
allowed. Defaults to `linear`.
alpha (float or int): Shape parameter for the activation
function, or `None` to use the default. Defaults to None.
gain (float): Scaling factor for the output tensor, or `None`
to use default. See `activation_funcs` for the default scaling of
each activation function. If unsure, consider specifying 1.
Defaults to None.
clamp (float): Clamp the output values to
`[-clamp, +clamp]`, or `None` to disable the clamping (default).
Defaults to None.
Returns:
torch.Tensor: Tensor of the same shape and datatype as `input`.
"""
assert isinstance(input, torch.Tensor)
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Add bias.
if bias is not None:
assert isinstance(bias, torch.Tensor) and bias.ndim == 1
assert 0 <= dim < input.ndim
assert bias.shape[0] == input.shape[dim]
input = input + bias.reshape(
[-1 if i == dim else 1 for i in range(input.ndim)])
# Evaluate activation function.
alpha = float(alpha)
output = spec.func(input, alpha=alpha)
# Scale by gain.
gain = float(gain)
if gain != 1:
output = output * gain
# Clamp.
if clamp >= 0:
# pylint: disable=invalid-unary-operand-type
output = output.clamp(-clamp, clamp)
return output
_bias_act_cuda_cache: Dict = dict()
def _bias_act_cuda(dim: int = 1,
act: str = 'linear',
alpha: Optional[Union[float, int]] = None,
gain: Optional[float] = None,
clamp: Optional[float] = None):
""""Fast CUDA implementation of `bias_act()` using custom ops.
Args:
dim (int): The dimension in `x` corresponding to the elements of `b`.
The value of `dim` is ignored if `b` is not specified.
Defaults to 1.
act (str): Name of the activation function to evaluate, or `"linear"`
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid",
"swish", etc. See `activation_funcs` for a full list. `None` is not
allowed. Defaults to `linear`.
alpha (float | int): Shape parameter for the activation
function, or `None` to use the default. Defaults to None.
gain (float): Scaling factor for the output tensor, or `None`
to use default. See `activation_funcs` for the default scaling of
each activation function. If unsure, consider specifying 1.
Defaults to None.
clamp (float): Clamp the output values to `[-clamp, +clamp]`,
or `None` to disable the clamping (default). Defaults to None.
Returns:
torch.Tensor: Tensor of the same shape and datatype as `x`.
"""
# Parse arguments.
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Lookup from cache.
key = (dim, act, alpha, gain, clamp)
if key in _bias_act_cuda_cache:
return _bias_act_cuda_cache[key]
# Forward op.
class BiasActCuda(torch.autograd.Function):
@staticmethod
def forward(ctx, x, b): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride(
1) == 1 else torch.contiguous_format
x = x.contiguous(memory_format=ctx.memory_format)
b = b.contiguous() if b is not None else _null_tensor.to(x.device)
y = x
if act != 'linear' or gain != 1 or clamp >= 0 or (
b is not _null_tensor.to(x.device)):
y = ext_module.bias_act(x, b, _null_tensor.to(x.device),
_null_tensor.to(x.device),
_null_tensor.to(x.device), 0, dim,
spec.cuda_idx, alpha, gain, clamp)
ctx.save_for_backward(
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor.to(
x.device), b if 'x' in spec.ref or spec.has_2nd_grad else
_null_tensor.to(x.device),
y if 'y' in spec.ref else _null_tensor.to(x.device))
return y
@staticmethod
def backward(ctx, dy): # pylint: disable=arguments-differ
dy = dy.contiguous(memory_format=ctx.memory_format)
x, b, y = ctx.saved_tensors
dx = None
db = None
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
dx = dy
if act != 'linear' or gain != 1 or clamp >= 0:
dx = BiasActCudaGrad.apply(dy, x, b, y)
if ctx.needs_input_grad[1]:
db = dx.sum([i for i in range(dx.ndim) if i != dim])
return dx, db
# Backward op.
class BiasActCudaGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
ctx.memory_format = torch.channels_last if dy.ndim > 2 and (
dy.stride(1) == 1) else torch.contiguous_format
dx = ext_module.bias_act(dy, b, x, y, _null_tensor.to(x.device), 1,
dim, spec.cuda_idx, alpha, gain, clamp)
ctx.save_for_backward(
dy if spec.has_2nd_grad else _null_tensor.to(x.device), x, b,
y)
return dx
@staticmethod
def backward(ctx, d_dx): # pylint: disable=arguments-differ
d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
dy, x, b, y = ctx.saved_tensors
d_dy = None
d_x = None
d_b = None
d_y = None
if ctx.needs_input_grad[0]:
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
if spec.has_2nd_grad and (ctx.needs_input_grad[1]
or ctx.needs_input_grad[2]):
d_x = ext_module.bias_act(d_dx, b, x, y, dy, 2, dim,
spec.cuda_idx, alpha, gain, clamp)
if spec.has_2nd_grad and ctx.needs_input_grad[2]:
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
return d_dy, d_x, d_b, d_y
# Add to cache.
_bias_act_cuda_cache[key] = BiasActCuda
return BiasActCuda
|