File size: 4,976 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple, Union

import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair

from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['bezier_align_forward', 'bezier_align_backward'])


class BezierAlignFunction(Function):

    @staticmethod
    def forward(ctx,
                input: torch.Tensor,
                beziers: torch.Tensor,
                output_size: Union[int, Tuple[int, int]],
                spatial_scale: Union[int, float] = 1.0,
                sampling_ratio: int = 0,
                aligned: bool = True) -> torch.Tensor:
        ctx.output_size = _pair(output_size)
        ctx.spatial_scale = spatial_scale
        ctx.input_shape = input.size()
        ctx.sampling_ratio = sampling_ratio
        ctx.aligned = aligned

        assert beziers.size(1) == 17
        output_shape = (beziers.size(0), input.size(1), ctx.output_size[0],
                        ctx.output_size[1])
        output = input.new_zeros(output_shape)
        ext_module.bezier_align_forward(
            input,
            beziers,
            output,
            aligned_height=ctx.output_size[0],
            aligned_width=ctx.output_size[1],
            spatial_scale=ctx.spatial_scale,
            sampling_ratio=ctx.sampling_ratio,
            aligned=ctx.aligned)

        ctx.save_for_backward(beziers)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output: torch.Tensor):
        beziers = ctx.saved_tensors[0]
        grad_input = grad_output.new_zeros(ctx.input_shape)
        grad_output = grad_output.contiguous()
        ext_module.bezier_align_backward(
            grad_output,
            beziers,
            grad_input,
            aligned_height=ctx.output_size[0],
            aligned_width=ctx.output_size[1],
            spatial_scale=ctx.spatial_scale,
            sampling_ratio=ctx.sampling_ratio,
            aligned=ctx.aligned)
        return grad_input, None, None, None, None, None


bezier_align = BezierAlignFunction.apply


class BezierAlign(nn.Module):
    """Bezier align pooling layer.

    Args:
        output_size (tuple): h, w
        spatial_scale (float): scale the input boxes by this number
        sampling_ratio (int): number of inputs samples to take for each
            output sample. 0 to take samples densely for current models.
        aligned (bool): if False, use the legacy implementation in
            MMDetection. If True, align the results more perfectly.

    Note:
        The implementation of BezierAlign is modified from
        https://github.com/aim-uofa/AdelaiDet

        The meaning of aligned=True:

        Given a continuous coordinate c, its two neighboring pixel
        indices (in our pixel model) are computed by floor(c - 0.5) and
        ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
        indices [0] and [1] (which are sampled from the underlying signal
        at continuous coordinates 0.5 and 1.5). But the original roi_align
        (aligned=False) does not subtract the 0.5 when computing
        neighboring pixel indices and therefore it uses pixels with a
        slightly incorrect alignment (relative to our pixel model) when
        performing bilinear interpolation.

        With `aligned=True`,
        we first appropriately scale the ROI and then shift it by -0.5
        prior to calling roi_align. This produces the correct neighbors;

        The difference does not make a difference to the model's
        performance if ROIAlign is used together with conv layers.
    """

    def __init__(
        self,
        output_size: Tuple,
        spatial_scale: Union[int, float],
        sampling_ratio: int,
        aligned: bool = True,
    ) -> None:
        super().__init__()

        self.output_size = _pair(output_size)
        self.spatial_scale = float(spatial_scale)
        self.sampling_ratio = int(sampling_ratio)
        self.aligned = aligned

    def forward(self, input: torch.Tensor,
                beziers: torch.Tensor) -> torch.Tensor:
        """BezierAlign forward.

        Args:
            inputs (Tensor): input features.
            beziers (Tensor): beziers for align.
        """
        return bezier_align(input, beziers, self.output_size,
                            self.spatial_scale, self.sampling_ratio,
                            self.aligned)

    def __repr__(self):
        s = self.__class__.__name__
        s += f'(output_size={self.output_size}, '
        s += f'spatial_scale={self.spatial_scale})'
        s += f'sampling_ratio={self.sampling_ratio})'
        s += f'aligned={self.aligned})'
        return s