File size: 10,318 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
from typing import Dict, Optional

import mmengine
import torch  # noqa
import torch.nn as nn
from mmengine.hooks import Hook
from mmengine.logging import print_log
from mmengine.registry import HOOKS

from .operator import BaseConvRFSearchOp, Conv2dRFSearchOp  # noqa
from .utils import get_single_padding, write_to_json


@HOOKS.register_module()
class RFSearchHook(Hook):
    """Rcecptive field search via dilation rates.

    Please refer to `RF-Next: Efficient Receptive Field
    Search for Convolutional Neural Networks
    <https://arxiv.org/abs/2206.06637>`_ for more details.


    Args:
        mode (str, optional): It can be set to the following types:
            'search', 'fixed_single_branch', or 'fixed_multi_branch'.
            Defaults to 'search'.
        config (Dict, optional): config dict of search.
            By default this config contains "search",
            and config["search"] must include:

            - "step": recording the current searching step.
            - "max_step": The maximum number of searching steps
              to update the structures.
            - "search_interval": The interval (epoch/iteration)
              between two updates.
            - "exp_rate": The controller of the sparsity of search space.
            - "init_alphas": The value for initializing weights of each branch.
            - "mmin": The minimum dilation rate.
            - "mmax": The maximum dilation rate.
            - "num_branches": The controller of the size of
              search space (the number of branches).
            - "skip_layer": The modules in skip_layer will be ignored
              during the receptive field search.
        rfstructure_file (str, optional): Path to load searched receptive
            fields of the model. Defaults to None.
        by_epoch (bool, optional): Determine to perform step by epoch or
            by iteration. If set to True, it will step by epoch. Otherwise, by
            iteration. Defaults to True.
        verbose (bool): Determines whether to print rf-next related logging
            messages. Defaults to True.
    """

    def __init__(self,
                 mode: str = 'search',
                 config: Dict = {},
                 rfstructure_file: Optional[str] = None,
                 by_epoch: bool = True,
                 verbose: bool = True):
        assert mode in ['search', 'fixed_single_branch', 'fixed_multi_branch']
        assert config is not None
        self.config = config
        self.config['structure'] = {}
        self.verbose = verbose
        if rfstructure_file is not None:
            rfstructure = mmengine.load(rfstructure_file)['structure']
            self.config['structure'] = rfstructure
        self.mode = mode
        self.num_branches = self.config['search']['num_branches']
        self.by_epoch = by_epoch

    def init_model(self, model: nn.Module):
        """init model with search ability.

        Args:
            model (nn.Module): pytorch model

        Raises:
            NotImplementedError: only support three modes:
                search/fixed_single_branch/fixed_multi_branch
        """
        if self.verbose:
            print_log('RFSearch init begin.', 'current')
        if self.mode == 'search':
            if self.config['structure']:
                self.set_model(model, search_op='Conv2d')
            self.wrap_model(model, search_op='Conv2d')
        elif self.mode == 'fixed_single_branch':
            self.set_model(model, search_op='Conv2d')
        elif self.mode == 'fixed_multi_branch':
            self.set_model(model, search_op='Conv2d')
            self.wrap_model(model, search_op='Conv2d')
        else:
            raise NotImplementedError
        if self.verbose:
            print_log('RFSearch init end.', 'current')

    def after_train_epoch(self, runner):
        """Performs a dilation searching step after one training epoch."""
        if self.by_epoch and self.mode == 'search':
            self.step(runner.model, runner.work_dir)

    def after_train_iter(self, runner, batch_idx, data_batch, outputs):
        """Performs a dilation searching step after one training iteration."""
        if not self.by_epoch and self.mode == 'search':
            self.step(runner.model, runner.work_dir)

    def step(self, model: nn.Module, work_dir: str) -> None:
        """Performs a dilation searching step.

        Args:
            model (nn.Module): pytorch model
            work_dir (str): Directory to save the searching results.
        """
        self.config['search']['step'] += 1
        if (self.config['search']['step']
            ) % self.config['search']['search_interval'] == 0 and (self.config[
                'search']['step']) < self.config['search']['max_step']:
            self.estimate_and_expand(model)
            for name, module in model.named_modules():
                if isinstance(module, BaseConvRFSearchOp):
                    self.config['structure'][name] = module.op_layer.dilation

            write_to_json(
                self.config,
                os.path.join(
                    work_dir,
                    'local_search_config_step%d.json' %
                    self.config['search']['step'],
                ),
            )

    def estimate_and_expand(self, model: nn.Module) -> None:
        """estimate and search for RFConvOp.

        Args:
            model (nn.Module): pytorch model
        """
        for module in model.modules():
            if isinstance(module, BaseConvRFSearchOp):
                module.estimate_rates()
                module.expand_rates()

    def wrap_model(self,
                   model: nn.Module,
                   search_op: str = 'Conv2d',
                   prefix: str = '') -> None:
        """wrap model to support searchable conv op.

        Args:
            model (nn.Module): pytorch model
            search_op (str): The module that uses RF search.
                Defaults to 'Conv2d'.
            init_rates (int, optional): Set to other initial dilation rates.
                Defaults to None.
            prefix (str): Prefix for function recursion. Defaults to ''.
        """
        op = 'torch.nn.' + search_op
        for name, module in model.named_children():
            if prefix == '':
                fullname = 'module.' + name
            else:
                fullname = prefix + '.' + name
            if self.config['search']['skip_layer'] is not None:
                if any(layer in fullname
                       for layer in self.config['search']['skip_layer']):
                    continue
            if isinstance(module, eval(op)):
                if 1 < module.kernel_size[0] and \
                    0 != module.kernel_size[0] % 2 or \
                    1 < module.kernel_size[1] and \
                        0 != module.kernel_size[1] % 2:
                    moduleWrap = eval(search_op + 'RFSearchOp')(
                        module, self.config['search'], self.verbose)
                    moduleWrap = moduleWrap.to(module.weight.device)
                    if self.verbose:
                        print_log(
                            'Wrap model %s to %s.' %
                            (str(module), str(moduleWrap)), 'current')
                    setattr(model, name, moduleWrap)
            elif not isinstance(module, BaseConvRFSearchOp):
                self.wrap_model(module, search_op, fullname)

    def set_model(self,
                  model: nn.Module,
                  search_op: str = 'Conv2d',
                  init_rates: Optional[int] = None,
                  prefix: str = '') -> None:
        """set model based on config.

        Args:
            model (nn.Module): pytorch model
            config (Dict): config file
            search_op (str): The module that uses RF search.
                Defaults to 'Conv2d'.
            init_rates (int, optional):  Set to other initial dilation rates.
                Defaults to None.
            prefix (str): Prefix for function recursion. Defaults to ''.
        """
        op = 'torch.nn.' + search_op
        for name, module in model.named_children():
            if prefix == '':
                fullname = 'module.' + name
            else:
                fullname = prefix + '.' + name
            if self.config['search']['skip_layer'] is not None:
                if any(layer in fullname
                       for layer in self.config['search']['skip_layer']):
                    continue
            if isinstance(module, eval(op)):
                if 1 < module.kernel_size[0] and \
                    0 != module.kernel_size[0] % 2 or \
                    1 < module.kernel_size[1] and \
                        0 != module.kernel_size[1] % 2:
                    if isinstance(self.config['structure'][fullname], int):
                        self.config['structure'][fullname] = [
                            self.config['structure'][fullname],
                            self.config['structure'][fullname]
                        ]
                    module.dilation = (
                        self.config['structure'][fullname][0],
                        self.config['structure'][fullname][1],
                    )
                    module.padding = (
                        get_single_padding(
                            module.kernel_size[0], module.stride[0],
                            self.config['structure'][fullname][0]),
                        get_single_padding(
                            module.kernel_size[1], module.stride[1],
                            self.config['structure'][fullname][1]))
                    setattr(model, name, module)
                    if self.verbose:
                        print_log(
                            'Set module %s dilation as: [%d %d]' %
                            (fullname, module.dilation[0], module.dilation[1]),
                            'current')
            elif not isinstance(module, BaseConvRFSearchOp):
                self.set_model(module, search_op, init_rates, fullname)