File size: 3,450 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import inspect
from typing import Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import xavier_init
from mmengine.registry import MODELS

MODELS.register_module('nearest', module=nn.Upsample)
MODELS.register_module('bilinear', module=nn.Upsample)


@MODELS.register_module(name='pixel_shuffle')
class PixelShufflePack(nn.Module):
    """Pixel Shuffle upsample layer.

    This module packs `F.pixel_shuffle()` and a nn.Conv2d module together to
    achieve a simple upsampling with pixel shuffle.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        scale_factor (int): Upsample ratio.
        upsample_kernel (int): Kernel size of the conv layer to expand the
            channels.
    """

    def __init__(self, in_channels: int, out_channels: int, scale_factor: int,
                 upsample_kernel: int):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.scale_factor = scale_factor
        self.upsample_kernel = upsample_kernel
        self.upsample_conv = nn.Conv2d(
            self.in_channels,
            self.out_channels * scale_factor * scale_factor,
            self.upsample_kernel,
            padding=(self.upsample_kernel - 1) // 2)
        self.init_weights()

    def init_weights(self):
        xavier_init(self.upsample_conv, distribution='uniform')

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.upsample_conv(x)
        x = F.pixel_shuffle(x, self.scale_factor)
        return x


def build_upsample_layer(cfg: Dict, *args, **kwargs) -> nn.Module:
    """Build upsample layer.

    Args:
        cfg (dict): The upsample layer config, which should contain:

            - type (str): Layer type.
            - scale_factor (int): Upsample ratio, which is not applicable to
              deconv.
            - layer args: Args needed to instantiate a upsample layer.
        args (argument list): Arguments passed to the ``__init__``
            method of the corresponding conv layer.
        kwargs (keyword arguments): Keyword arguments passed to the
            ``__init__`` method of the corresponding conv layer.

    Returns:
        nn.Module: Created upsample layer.
    """
    if not isinstance(cfg, dict):
        raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
    if 'type' not in cfg:
        raise KeyError(
            f'the cfg dict must contain the key "type", but got {cfg}')
    cfg_ = cfg.copy()

    layer_type = cfg_.pop('type')

    if inspect.isclass(layer_type):
        upsample = layer_type
    # Switch registry to the target scope. If `upsample` cannot be found
    # in the registry, fallback to search `upsample` in the
    # mmengine.MODELS.
    else:
        with MODELS.switch_scope_and_registry(None) as registry:
            upsample = registry.get(layer_type)
        if upsample is None:
            raise KeyError(f'Cannot find {upsample} in registry under scope '
                           f'name {registry.scope}')
        if upsample is nn.Upsample:
            cfg_['mode'] = layer_type
    layer = upsample(*args, **kwargs, **cfg_)
    return layer