File size: 2,884 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Tuple, Union

import torch
from mmengine.registry import MODELS
from torch import nn
from torch.nn import functional as F


@MODELS.register_module()
class Conv2dAdaptivePadding(nn.Conv2d):
    """Implementation of 2D convolution in tensorflow with `padding` as "same",
    which applies padding to input (if needed) so that input image gets fully
    covered by filter and stride you specified. For stride 1, this will ensure
    that output image size is same as input. For stride of 2, output dimensions
    will be half, for example.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of
            the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements.
            Default: 1
        groups (int, optional): Number of blocked connections from input
            channels to output channels. Default: 1
        bias (bool, optional): If ``True``, adds a learnable bias to the
            output. Default: ``True``
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int, int]],
                 stride: Union[int, Tuple[int, int]] = 1,
                 padding: Union[int, Tuple[int, int]] = 0,
                 dilation: Union[int, Tuple[int, int]] = 1,
                 groups: int = 1,
                 bias: bool = True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0,
                         dilation, groups, bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        img_h, img_w = x.size()[-2:]
        kernel_h, kernel_w = self.weight.size()[-2:]
        stride_h, stride_w = self.stride
        output_h = math.ceil(img_h / stride_h)
        output_w = math.ceil(img_w / stride_w)
        pad_h = (
            max((output_h - 1) * self.stride[0] +
                (kernel_h - 1) * self.dilation[0] + 1 - img_h, 0))
        pad_w = (
            max((output_w - 1) * self.stride[1] +
                (kernel_w - 1) * self.dilation[1] + 1 - img_w, 0))
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [
                pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
            ])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
                        self.dilation, self.groups)