from abc import abstractmethod from typing import Iterable import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F from einops import rearrange from ...modules.attention import SpatialTransformer from ...modules.diffusionmodules.util import ( avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module, ) from ...util import default, exists class Timestep(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, t): return timestep_embedding(t, self.dim) class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward( self, x, emb, t_context=None, v_context=None ): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, SpatialTransformer): x = layer(x, t_context, v_context) else: x = layer(x) return x class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__( self, channels, use_conv, dims=2, out_channels=None, padding=1, third_up=False ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims self.third_up = third_up if use_conv: self.conv = conv_nd( dims, self.channels, self.out_channels, 3, padding=padding ) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: t_factor = 1 if not self.third_up else 2 x = F.interpolate( x, (t_factor * x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest", ) else: x = F.interpolate(x, scale_factor=2, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__( self, channels, use_conv, dims=2, out_channels=None, padding=1, third_down=False ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2)) if use_conv: # print(f"Building a Downsample layer with {dims} dims.") # print( # f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, " # f"kernel-size: 3, stride: {stride}, padding: {padding}" # ) if dims == 3: pass # print(f" --> Downsampling third axis (time): {third_down}") self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, up=False, down=False, kernel_size=3, exchange_temb_dims=False, skip_t_emb=False ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_scale_shift_norm = use_scale_shift_norm self.exchange_temb_dims = exchange_temb_dims if isinstance(kernel_size, Iterable): padding = [k // 2 for k in kernel_size] else: padding = kernel_size // 2 self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.skip_t_emb = skip_t_emb self.emb_out_channels = ( 2 * self.out_channels if use_scale_shift_norm else self.out_channels ) if self.skip_t_emb: print(f"Skipping timestep embedding in {self.__class__.__name__}") assert not self.use_scale_shift_norm self.emb_layers = None self.exchange_temb_dims = False else: self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, self.emb_out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd( dims, self.out_channels, self.out_channels, kernel_size, padding=padding, ) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, kernel_size, padding=padding ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) if self.skip_t_emb: emb_out = th.zeros_like(h) else: emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: if self.exchange_temb_dims: emb_out = rearrange(emb_out, "b t c ... -> b c t ...") h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h import seaborn as sns import matplotlib.pyplot as plt class UnifiedUNetModel(nn.Module): def __init__( self, in_channels, ctrl_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), save_attn_type=None, save_attn_layers=[], conv_resample=True, dims=2, use_label=None, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, transformer_depth=1, t_context_dim=None, v_context_dim=None, num_attention_blocks=None, use_linear_in_transformer=False, adm_in_channels=None, transformer_depth_middle=None ): super().__init__() if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert ( num_head_channels != -1 ), "Either num_heads or num_head_channels has to be set" if num_head_channels == -1: assert ( num_heads != -1 ), "Either num_heads or num_head_channels has to be set" self.in_channels = in_channels self.ctrl_channels = ctrl_channels self.model_channels = model_channels self.out_channels = out_channels transformer_depth = len(channel_mult) * [transformer_depth] transformer_depth_middle = default(transformer_depth_middle, transformer_depth[-1]) self.num_res_blocks = len(channel_mult) * [num_res_blocks] self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_label = use_label self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) if self.use_label is not None: self.label_emb = nn.Sequential( nn.Sequential( linear(adm_in_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) if self.ctrl_channels > 0: self.ctrl_block = TimestepEmbedSequential( conv_nd(dims, ctrl_channels, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 256, 3, padding=1), nn.SiLU(), zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_scale_shift_norm=use_scale_shift_norm ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if ( not exists(num_attention_blocks) or nr < num_attention_blocks[level] ): layers.append( SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth[level], t_context_dim=t_context_dim, v_context_dim=v_context_dim, use_linear=use_linear_in_transformer ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_scale_shift_norm=use_scale_shift_norm, down=True ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_scale_shift_norm=use_scale_shift_norm ), SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth_middle, t_context_dim=t_context_dim, v_context_dim=v_context_dim, use_linear=use_linear_in_transformer ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_scale_shift_norm=use_scale_shift_norm ) ) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(self.num_res_blocks[level] + 1): ich = input_block_chans.pop() layers = [ ResBlock( ch + ich, time_embed_dim, dropout, out_channels=model_channels * mult, dims=dims, use_scale_shift_norm=use_scale_shift_norm ) ] ch = model_channels * mult if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if ( not exists(num_attention_blocks) or i < num_attention_blocks[level] ): layers.append( SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth[level], t_context_dim=t_context_dim, v_context_dim=v_context_dim, use_linear=use_linear_in_transformer ) ) if level and i == self.num_res_blocks[level]: out_ch = ch layers.append( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_scale_shift_norm=use_scale_shift_norm, up=True ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = nn.Sequential( normalization(ch), nn.SiLU(), zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)) ) # cache attn map self.attn_type = save_attn_type self.attn_layers = save_attn_layers self.attn_map_cache = [] for name, module in self.named_modules(): if any([name.endswith(attn_type) for attn_type in self.attn_type]): item = {"name": name, "heads": module.heads, "size": None, "attn_map": None} self.attn_map_cache.append(item) module.attn_map_cache = item def clear_attn_map(self): for item in self.attn_map_cache: if item["attn_map"] is not None: del item["attn_map"] item["attn_map"] = None def save_attn_map(self, attn_type="t_attn", save_name="temp", tokens=""): attn_maps = [] for item in self.attn_map_cache: name = item["name"] if any([name.startswith(block) for block in self.attn_layers]) and name.endswith(attn_type): heads = item["heads"] attn_maps.append(item["attn_map"].detach().cpu()) attn_map = th.stack(attn_maps, dim=0) attn_map = th.mean(attn_map, dim=0) # attn_map: bh * n * l bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1) b = attn_map.shape[0] h = w = int(n**0.5) attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy() attn_map_i = attn_map[-1] l = attn_map_i.shape[0] fig = plt.figure(figsize=(12, 8), dpi=300) for j in range(12): if j >= l: break ax = fig.add_subplot(3, 4, j+1) sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False) if j < len(tokens): ax.set_title(tokens[j]) fig.savefig(f"temp/attn_map/attn_map_{save_name}.png") plt.close() return attn_map_i def forward(self, x, timesteps=None, t_context=None, v_context=None, y=None, **kwargs): assert (y is not None) == ( self.use_label is not None ), "must specify y if and only if the model is class-conditional" self.clear_attn_map() hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) if self.use_label is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x if self.ctrl_channels > 0: in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1) for i, module in enumerate(self.input_blocks): if self.ctrl_channels > 0 and i == 0: h = module(in_h, emb, t_context, v_context) + self.ctrl_block(add_h, emb, t_context, v_context) else: h = module(h, emb, t_context, v_context) hs.append(h) h = self.middle_block(h, emb, t_context, v_context) for i, module in enumerate(self.output_blocks): h = th.cat([h, hs.pop()], dim=1) h = module(h, emb, t_context, v_context) h = h.type(x.dtype) return self.out(h)