jaeyoungk commited on
Commit
8b1e6d4
ยท
1 Parent(s): 8a378e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -51
app.py CHANGED
@@ -1,56 +1,15 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
2
  import gradio as gr
 
3
 
4
- model = PeftModel.from_pretrained("RAIJAY/7B_QA_68348")
5
- tokenizer = AutoTokenizer.from_pretrained("RAIJAY/7B_QA_68348")
6
 
7
- prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur.
8
- person: What are you working on?
9
- Hassan: This new AI community building the future of Africa
10
- person: Where are you?
11
- Hassan: In Lagos for a week, then Paris or London.
12
- person: How's it going?
13
- Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup
14
- person: """
15
 
16
- def my_split(s, seps):
17
- res = [s]
18
- for sep in seps:
19
- s, res = res, []
20
- for seq in s:
21
- res += seq.split(sep)
22
- return res
23
 
24
- # input = "Who are you?"
25
- def chat_base(input):
26
- p = prompt + input
27
- input_ids = tokenizer(p, return_tensors="pt").input_ids
28
- gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,)
29
- gen_text = tokenizer.batch_decode(gen_tokens)[0]
30
- # print(gen_text)
31
- result = gen_text[len(p):]
32
- # print(">", result)
33
- result = my_split(result, [']', '\n'])[1]
34
- # print(">>", result)
35
- if "Hassan: " in result:
36
- result = result.split("Hassan: ")[-1]
37
- # print(">>>", result)
38
- return result
39
-
40
- import gradio as gr
41
-
42
- def chat(message):
43
- history = gr.get_state() or []
44
- print(history)
45
- response = chat_base(message)
46
- history.append((message, response))
47
- gr.set_state(history)
48
- html = "<div class='chatbot'>"
49
- for user_msg, resp_msg in history:
50
- html += f"<div class='user_msg'>{user_msg}</div>"
51
- html += f"<div class='resp_msg'>{resp_msg}</div>"
52
- html += "</div>"
53
- return response
54
-
55
- iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False)
56
- iface.launch()
 
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
 
4
+ # Hugging Face์—์„œ ๋ชจ๋ธ ๋กœ๋“œ
5
+ qa_model = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
6
 
7
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜
8
+ def question_answering(question):
9
+ answer = qa_model(question)["answer"]
10
+ return answer
 
 
 
 
11
 
12
+ iface = gr.Interface(fn=question_answering, inputs="text", outputs="text")
 
 
 
 
 
 
13
 
14
+ # Gradio ์•ฑ ์‹คํ–‰
15
+ iface.launch()