Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,56 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
+
model = PeftModel.from_pretrained("RAIJAY/7B_QA_68348")
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("RAIJAY/7B_QA_68348")
|
| 6 |
|
| 7 |
+
prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur.
|
| 8 |
+
person: What are you working on?
|
| 9 |
+
Hassan: This new AI community building the future of Africa
|
| 10 |
+
person: Where are you?
|
| 11 |
+
Hassan: In Lagos for a week, then Paris or London.
|
| 12 |
+
person: How's it going?
|
| 13 |
+
Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup
|
| 14 |
+
person: """
|
| 15 |
+
|
| 16 |
+
def my_split(s, seps):
|
| 17 |
+
res = [s]
|
| 18 |
+
for sep in seps:
|
| 19 |
+
s, res = res, []
|
| 20 |
+
for seq in s:
|
| 21 |
+
res += seq.split(sep)
|
| 22 |
+
return res
|
| 23 |
+
|
| 24 |
+
# input = "Who are you?"
|
| 25 |
+
def chat_base(input):
|
| 26 |
+
p = prompt + input
|
| 27 |
+
input_ids = tokenizer(p, return_tensors="pt").input_ids
|
| 28 |
+
gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,)
|
| 29 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
| 30 |
+
# print(gen_text)
|
| 31 |
+
result = gen_text[len(p):]
|
| 32 |
+
# print(">", result)
|
| 33 |
+
result = my_split(result, [']', '\n'])[1]
|
| 34 |
+
# print(">>", result)
|
| 35 |
+
if "Hassan: " in result:
|
| 36 |
+
result = result.split("Hassan: ")[-1]
|
| 37 |
+
# print(">>>", result)
|
| 38 |
+
return result
|
| 39 |
+
|
| 40 |
+
import gradio as gr
|
| 41 |
+
|
| 42 |
+
def chat(message):
|
| 43 |
+
history = gr.get_state() or []
|
| 44 |
+
print(history)
|
| 45 |
+
response = chat_base(message)
|
| 46 |
+
history.append((message, response))
|
| 47 |
+
gr.set_state(history)
|
| 48 |
+
html = "<div class='chatbot'>"
|
| 49 |
+
for user_msg, resp_msg in history:
|
| 50 |
+
html += f"<div class='user_msg'>{user_msg}</div>"
|
| 51 |
+
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
| 52 |
+
html += "</div>"
|
| 53 |
+
return response
|
| 54 |
+
|
| 55 |
+
iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False)
|
| 56 |
+
iface.launch()
|