Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,332 Bytes
420fa3e 78d66d3 420fa3e c73b59b 78d66d3 c73b59b 5017de6 c73b59b 420fa3e 5017de6 420fa3e 78d66d3 c73b59b a4a6a96 c73b59b c30e671 420fa3e c73b59b 5017de6 c73b59b 78d66d3 c73b59b 78d66d3 c73b59b 78d66d3 c73b59b a4a6a96 c73b59b 78d66d3 c73b59b 78d66d3 a4a6a96 5017de6 a4a6a96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
from transformers import pipeline, SamModel, SamProcessor
import torch
import numpy as np
import gradio as gr
from PIL import Image
# check if cuda is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# we initialize model and processor
checkpoint = "google/owlv2-base-patch16-ensemble"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device=device)
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base").to(device)
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
def apply_mask(image, mask, color):
"""Apply a mask to an image with a specific color."""
for c in range(3): # Iterate over RGB channels
image[:, :, c] = np.where(mask, color[c], image[:, :, c])
return image
def query(image, texts, threshold):
texts = texts.split(",")
predictions = detector(
image,
candidate_labels=texts,
threshold=threshold
)
image = np.array(image).copy()
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 165, 0), # Orange
(255, 0, 255) # Magenta
]
for i, pred in enumerate(predictions):
score = pred["score"]
if score > 0.5:
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
inputs = sam_processor(
image,
input_boxes=[[[box]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
mask = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
color = colors[i % len(colors)] # cycle through colors
image = apply_mask(image, mask > 0.5, color)
result_image = Image.fromarray(image)
return result_image
title = """
# RobustSAM
"""
description = """
**Welcome to RobustSAM by Snap Research.**
This Space uses **RobustSAM**, a robust version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities.
Thanks to its integration with **OWLv2**, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality.
Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results.
For better results, please check the [GitHub repository](https://github.com/robustsam/RobustSAM).
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Interface(
query,
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label="Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
outputs=gr.Image(type="pil", label="Segmented Image"),
examples=[
["./blur.jpg", "insect", 0.1],
["./lowlight.jpg", "bus, window", 0.1]
],
cache_examples=True
)
demo.launch()
|