Spaces:
Runtime error
Runtime error
File size: 5,023 Bytes
9a40e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr
from lmp import LMP, LMPFGen
from sim import PickPlaceEnv, LMP_wrapper
from consts import ALL_BLOCKS, ALL_BOWLS
class DemoRunner:
def __init__(self):
self._cfg = OmegaConf.to_container(OmegaConf.load('cfg.yaml'), resolve=True)
self._env = None
self._model_name = ''
def make_LMP(self, env):
# LMP env wrapper
cfg = copy.deepcopy(self._cfg)
cfg['env'] = {
'init_objs': list(env.obj_name_to_id.keys()),
'coords': cfg['tabletop_coords']
}
for vs in cfg['lmps'].values():
vs['engine'] = self._model_name
LMP_env = LMP_wrapper(env, cfg)
# creating APIs that the LMPs can interact with
fixed_vars = {
'np': np
}
fixed_vars.update({
name: eval(name)
for name in shapely.geometry.__all__ + shapely.affinity.__all__
})
variable_vars = {
k: getattr(LMP_env, k)
for k in [
'get_bbox', 'get_obj_pos', 'get_color', 'is_obj_visible', 'denormalize_xy',
'put_first_on_second', 'get_obj_names',
'get_corner_name', 'get_side_name',
]
}
variable_vars['say'] = lambda msg: print(f'robot says: {msg}')
# creating the function-generating LMP
lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars)
# creating other low-level LMPs
variable_vars.update({
k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars)
for k in ['parse_obj_name', 'parse_position', 'parse_question', 'transform_shape_pts']
})
# creating the LMP that deals w/ high-level language commands
lmp_tabletop_ui = LMP(
'tabletop_ui', cfg['lmps']['tabletop_ui'], lmp_fgen, fixed_vars, variable_vars
)
return lmp_tabletop_ui
def setup(self, api_key, model_name, n_blocks, n_bowls):
openai.api_key = api_key
self._model_name = model_name
self._env = PickPlaceEnv(render=True, high_res=False, high_frame_rate=False)
block_list = np.random.choice(ALL_BLOCKS, size=n_blocks, replace=False).tolist()
bowl_list = np.random.choice(ALL_BOWLS, size=n_bowls, replace=False).tolist()
obj_list = block_list + bowl_list
self._env.reset(obj_list)
self._lmp_tabletop_ui = self.make_LMP(self._env)
info = '## Available objects: \n- ' + '\n- '.join(obj_list)
img = self._env.get_camera_image()
return info, img
def run(self, instruction):
if self._env is None:
return 'Please run setup first'
self._env.cache_video = []
self._lmp_tabletop_ui(instruction, f'objects = {self._env.object_list}')
video_file_name = ''
if self._env.cache_video:
rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
video_file_name = NamedTemporaryFile(suffix='.mp4', delete=False).name
rendered_clip.write_videofile(video_file_name, fps=25)
return 'Done', video_file_name
if __name__ == '__main__':
demo_runner = DemoRunner()
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
with gr.Row():
inp_api_key = gr.Textbox(label='OpenAI API Key', lines=1, value='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')
inp_model_name = gr.Dropdown(label='Model Name', choices=['code-davinci-002', 'text-davinci-002'], value='code-davinci-002')
with gr.Row():
inp_n_blocks = gr.Slider(label='Num Blocks', minimum=0, maximum=3, value=3, step=1)
inp_n_bowls = gr.Slider(label='Num Bowls', minimum=0, maximum=3, value=3, step=1)
btn_setup = gr.Button("1) Setup/Reset Env")
info_setup = gr.Markdown(label='Setup Info')
with gr.Column():
img_setup = gr.Image(label='Setup Image')
with gr.Row():
with gr.Column():
inp_instruction = gr.Textbox(label='Instruction', lines=1)
btn_run = gr.Button("2) Run Instruction")
info_run = gr.Label(label='Run Info')
with gr.Column():
video_run = gr.Video(label='Run Video')
btn_setup.click(
demo_runner.setup,
inputs=[inp_api_key, inp_model_name, inp_n_blocks, inp_n_bowls],
outputs=[info_setup, img_setup]
)
btn_run.click(
demo_runner.run,
inputs=[inp_instruction],
outputs=[info_run, video_run]
)
demo.launch() |