Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,262 +1,262 @@
|
|
1 |
-
import torch
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import gradio as gr
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
from sentence_transformers import util, SentenceTransformer
|
7 |
-
import ast
|
8 |
-
import json
|
9 |
-
import re
|
10 |
-
|
11 |
-
# Load embeddings and data
|
12 |
-
embeddings = torch.load("embeddings.pth") # shape: [377, 768]
|
13 |
-
data_df = pd.read_csv("data.csv")
|
14 |
-
|
15 |
-
# Load model once
|
16 |
-
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
-
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1",trust_remote_code=True)
|
18 |
-
|
19 |
-
def extract_duration(text):
|
20 |
-
match = re.search(r"\d+", str(text)) # look for the first number
|
21 |
-
return int(match.group()) if match else 0
|
22 |
-
|
23 |
-
type_mapping = {
|
24 |
-
"A": "Ability & Aptitude",
|
25 |
-
"B": "Biodata & Situational Judgement",
|
26 |
-
"C": "Competencies",
|
27 |
-
"D": "Development & 360",
|
28 |
-
"E": "Assessment Exercises",
|
29 |
-
"K": "Knowledge & Skills",
|
30 |
-
"P": "Personality & Behavior",
|
31 |
-
"S": "Simulations"
|
32 |
-
}
|
33 |
-
|
34 |
-
def decode_test_types(test_type_raw):
|
35 |
-
try:
|
36 |
-
test_type_list = ast.literal_eval(test_type_raw)
|
37 |
-
return [type_mapping.get(code.strip(), code.strip()) for code in test_type_list]
|
38 |
-
except Exception:
|
39 |
-
return []
|
40 |
-
|
41 |
-
|
42 |
-
def clean_query_text(text):
|
43 |
-
replacements = {
|
44 |
-
"Java Script": "JavaScript",
|
45 |
-
"java script": "JavaScript",
|
46 |
-
"Java script": "JavaScript"
|
47 |
-
}
|
48 |
-
for wrong, correct in replacements.items():
|
49 |
-
text = text.replace(wrong, correct)
|
50 |
-
return text
|
51 |
-
|
52 |
-
def prepare_input(query):
|
53 |
-
cleaned_query = clean_query_text(query)
|
54 |
-
input_text = f"{cleaned_query}"
|
55 |
-
return input_text.strip()
|
56 |
-
|
57 |
-
def find_top_k(query: str, k: int = 5):
|
58 |
-
query_str = prepare_input(query)
|
59 |
-
query_vec = model.encode([query_str], normalize_embeddings=True)
|
60 |
-
|
61 |
-
scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
62 |
-
ranked_indices = np.argsort(-scores)
|
63 |
-
|
64 |
-
results = []
|
65 |
-
for idx in ranked_indices[:k]:
|
66 |
-
item = data_df.iloc[idx]
|
67 |
-
test_type_raw = item["test_types"]
|
68 |
-
test_type_decoded = decode_test_types(test_type_raw)
|
69 |
-
|
70 |
-
results.append({
|
71 |
-
"url": item["url"],
|
72 |
-
"adaptive_support": item["adaptive"],
|
73 |
-
"description": item["description"],
|
74 |
-
"duration": extract_duration(item["assessment_length"]),
|
75 |
-
"remote_support": item["remote"],
|
76 |
-
"test_type": test_type_decoded
|
77 |
-
})
|
78 |
-
|
79 |
-
# result = {
|
80 |
-
# "name": item["name"],
|
81 |
-
# "url": item["url"],
|
82 |
-
# "duration": item["assessment_length"],
|
83 |
-
# "remote": item["remote"],
|
84 |
-
# "adaptive": item["adaptive"]
|
85 |
-
# }
|
86 |
-
# results.append(result)
|
87 |
-
|
88 |
-
return results
|
89 |
-
|
90 |
-
def health():
|
91 |
-
return gr.JSON({"status": "healthy"})
|
92 |
-
|
93 |
-
def recommend(query):
|
94 |
-
recommended = find_top_k(query)
|
95 |
-
return gr.JSON({"recommended_assessments": recommended})
|
96 |
-
|
97 |
-
recommend_api = gr.Interface(fn=recommend, inputs=gr.Textbox(), outputs="json")
|
98 |
-
health_api = gr.Interface(fn=health, inputs=[], outputs="json")
|
99 |
-
|
100 |
-
# Gradio app with multiple endpoints
|
101 |
-
demo = gr.TabbedInterface(
|
102 |
-
interface_list=[recommend_api, health_api],
|
103 |
-
tab_names=["recommend", "health"]
|
104 |
-
)
|
105 |
-
|
106 |
-
if __name__ == "__main__":
|
107 |
-
demo.launch()
|
108 |
-
# Gradio Interface
|
109 |
-
|
110 |
-
# app = gr.Interface(
|
111 |
-
# fn=recommend,
|
112 |
-
# inputs=gr.Textbox(label="Job Description or Query"),
|
113 |
-
# outputs="json",
|
114 |
-
# examples=["Looking for java developer assessment", "Communication skills test"]
|
115 |
-
# )
|
116 |
-
|
117 |
-
# # Add `/health` route manually using FastAPI inside Gradio
|
118 |
-
# app.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True, inline=False)
|
119 |
-
# with gr.Blocks() as demo:
|
120 |
-
# gr.Markdown("### SHL Assessment Recommender")
|
121 |
-
|
122 |
-
# query_input = gr.Textbox(label="Job Query", placeholder="e.g. JavaScript Developer")
|
123 |
-
# duration_input = gr.Textbox(label="Assessment Duration (minutes)", placeholder="e.g. 30")
|
124 |
-
# topk_input = gr.Slider(label="Top K Results", minimum=1, maximum=10, step=1, value=5)
|
125 |
-
# output = gr.JSON(label="Top Matches")
|
126 |
-
|
127 |
-
# submit_btn = gr.Button("Submit")
|
128 |
-
|
129 |
-
# def process(query, duration, top_k):
|
130 |
-
# return find_top_k(query, duration, top_k)
|
131 |
-
|
132 |
-
# submit_btn.click(fn=process, inputs=[query_input, duration_input, topk_input], outputs=[output])
|
133 |
-
|
134 |
-
# demo.launch()
|
135 |
-
|
136 |
-
# def find_top_k(query_json, k=5):
|
137 |
-
# query_str = prepare_input(query_json)
|
138 |
-
|
139 |
-
# # Convert query to vector
|
140 |
-
# query_vec = model.encode([query_str], normalize_embeddings=True)
|
141 |
-
|
142 |
-
# # Cosine similarity with precomputed normalized embeddings
|
143 |
-
# scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
144 |
-
# ranked_indices = np.argsort(-scores)
|
145 |
-
|
146 |
-
# results = []
|
147 |
-
# for idx in ranked_indices[:k]:
|
148 |
-
# item = data_df.iloc[idx]
|
149 |
-
# result = {
|
150 |
-
# "name": item["name"],
|
151 |
-
# "url": item["url"],
|
152 |
-
# "remote_testing": item["remote"],
|
153 |
-
# "adaptive": item["adaptive"],
|
154 |
-
# "duration": item["assessment_length"],
|
155 |
-
# "test_type": item["test_types"],
|
156 |
-
# }
|
157 |
-
# results.append(result)
|
158 |
-
|
159 |
-
# return results
|
160 |
-
|
161 |
-
# # Gradio Interface
|
162 |
-
# with gr.Blocks() as demo:
|
163 |
-
# gr.Markdown("### RAG Gradio Demo with JSON Query")
|
164 |
-
|
165 |
-
# json_input = gr.Textbox(label="JSON Query (as JSON string)")
|
166 |
-
# output = gr.JSON(label="Top Matches from Data")
|
167 |
-
|
168 |
-
# def process(json_input_str):
|
169 |
-
# try:
|
170 |
-
# query_json = json.loads(json_input_str)
|
171 |
-
# results = find_top_k(query_json)
|
172 |
-
# return results
|
173 |
-
# except Exception as e:
|
174 |
-
# return {"error": str(e)}
|
175 |
-
|
176 |
-
# submit_btn = gr.Button("Submit")
|
177 |
-
# submit_btn.click(fn=process, inputs=[json_input], outputs=[output])
|
178 |
-
|
179 |
-
# demo.launch()
|
180 |
-
|
181 |
-
# import torch
|
182 |
-
# import pandas as pd
|
183 |
-
# import numpy as np
|
184 |
-
# import gradio as gr
|
185 |
-
# from sklearn.metrics.pairwise import cosine_similarity
|
186 |
-
# from sentence_transformers import util,SentenceTransformer
|
187 |
-
|
188 |
-
# # Load embeddings and data
|
189 |
-
# embeddings = torch.load("embeddings.pth") # shape: [377, 768]
|
190 |
-
# data_df = pd.read_csv("data.csv")
|
191 |
-
|
192 |
-
# def clean_query_text(text):
|
193 |
-
# replacements = {
|
194 |
-
# "Java Script": "JavaScript",
|
195 |
-
# "java script": "JavaScript",
|
196 |
-
# "Java script": "JavaScript"
|
197 |
-
# }
|
198 |
-
# for wrong, correct in replacements.items():
|
199 |
-
# text = text.replace(wrong, correct)
|
200 |
-
# return text
|
201 |
-
|
202 |
-
# def prepare_input(data):
|
203 |
-
# cleaned_query = clean_query_text(data.query)
|
204 |
-
# input_text = f"{cleaned_query}. Candidate should complete assessment in {data.duration} minutes."
|
205 |
-
# return input_text.strip()
|
206 |
-
|
207 |
-
# def find_top_k(query_json, k=5):
|
208 |
-
# query_str = prepare_input(query_json)
|
209 |
-
# # Convert query to vector
|
210 |
-
# from sentence_transformers import SentenceTransformer
|
211 |
-
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
212 |
-
# query_vec = model.encode([query_str], normalize_embeddings=True)
|
213 |
-
# scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
214 |
-
# ranked_indices = np.argsort(-scores)
|
215 |
-
|
216 |
-
# results = []
|
217 |
-
# for idx in ranked_indices:
|
218 |
-
# item = data_df.iloc[idx]
|
219 |
-
# print(f"Matched: {item['name']} with duration {item['assessment_length']}")
|
220 |
-
|
221 |
-
# result = {
|
222 |
-
# "name": item["name"],
|
223 |
-
# "url": item["url"],
|
224 |
-
# "remote_testing": item["remote"],
|
225 |
-
# "adaptive": item["adaptive"],
|
226 |
-
# "duration": item['assessment_length'],
|
227 |
-
# "test_type": item["test_types"],
|
228 |
-
# }
|
229 |
-
# results.append(result)
|
230 |
-
|
231 |
-
# if len(results) >= top_k:
|
232 |
-
# break
|
233 |
-
|
234 |
-
# return results
|
235 |
-
|
236 |
-
|
237 |
-
# # Compute similarity
|
238 |
-
# # similarities = cosine_similarity(query_vec, embeddings.numpy())[0]
|
239 |
-
# # top_indices = similarities.argsort()[-k:][::-1]
|
240 |
-
|
241 |
-
# # results = data_df.iloc[top_indices].to_dict(orient="records")
|
242 |
-
# # return results
|
243 |
-
|
244 |
-
# with gr.Blocks() as demo:
|
245 |
-
# gr.Markdown("### RAG Gradio Demo with JSON Query")
|
246 |
-
|
247 |
-
# json_input = gr.Textbox(label="JSON Query (as string)")
|
248 |
-
# output = gr.JSON(label="Top Matches from Data")
|
249 |
-
|
250 |
-
# def process(json_input_str):
|
251 |
-
# try:
|
252 |
-
# import json
|
253 |
-
# query_json = json.loads(json_input_str)
|
254 |
-
# results = find_top_k(query_json)
|
255 |
-
# return results
|
256 |
-
# except Exception as e:
|
257 |
-
# return {"error": str(e)}
|
258 |
-
|
259 |
-
# submit_btn = gr.Button("Submit")
|
260 |
-
# submit_btn.click(fn=process, inputs=[json_input], outputs=[output])
|
261 |
-
|
262 |
-
# demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from sentence_transformers import util, SentenceTransformer
|
7 |
+
import ast
|
8 |
+
import json
|
9 |
+
import re
|
10 |
+
|
11 |
+
# Load embeddings and data
|
12 |
+
embeddings = torch.load("embeddings.pth",weights_only = False) # shape: [377, 768]
|
13 |
+
data_df = pd.read_csv("data.csv")
|
14 |
+
|
15 |
+
# Load model once
|
16 |
+
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1",trust_remote_code=True)
|
18 |
+
|
19 |
+
def extract_duration(text):
|
20 |
+
match = re.search(r"\d+", str(text)) # look for the first number
|
21 |
+
return int(match.group()) if match else 0
|
22 |
+
|
23 |
+
type_mapping = {
|
24 |
+
"A": "Ability & Aptitude",
|
25 |
+
"B": "Biodata & Situational Judgement",
|
26 |
+
"C": "Competencies",
|
27 |
+
"D": "Development & 360",
|
28 |
+
"E": "Assessment Exercises",
|
29 |
+
"K": "Knowledge & Skills",
|
30 |
+
"P": "Personality & Behavior",
|
31 |
+
"S": "Simulations"
|
32 |
+
}
|
33 |
+
|
34 |
+
def decode_test_types(test_type_raw):
|
35 |
+
try:
|
36 |
+
test_type_list = ast.literal_eval(test_type_raw)
|
37 |
+
return [type_mapping.get(code.strip(), code.strip()) for code in test_type_list]
|
38 |
+
except Exception:
|
39 |
+
return []
|
40 |
+
|
41 |
+
|
42 |
+
def clean_query_text(text):
|
43 |
+
replacements = {
|
44 |
+
"Java Script": "JavaScript",
|
45 |
+
"java script": "JavaScript",
|
46 |
+
"Java script": "JavaScript"
|
47 |
+
}
|
48 |
+
for wrong, correct in replacements.items():
|
49 |
+
text = text.replace(wrong, correct)
|
50 |
+
return text
|
51 |
+
|
52 |
+
def prepare_input(query):
|
53 |
+
cleaned_query = clean_query_text(query)
|
54 |
+
input_text = f"{cleaned_query}"
|
55 |
+
return input_text.strip()
|
56 |
+
|
57 |
+
def find_top_k(query: str, k: int = 5):
|
58 |
+
query_str = prepare_input(query)
|
59 |
+
query_vec = model.encode([query_str], normalize_embeddings=True)
|
60 |
+
|
61 |
+
scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
62 |
+
ranked_indices = np.argsort(-scores)
|
63 |
+
|
64 |
+
results = []
|
65 |
+
for idx in ranked_indices[:k]:
|
66 |
+
item = data_df.iloc[idx]
|
67 |
+
test_type_raw = item["test_types"]
|
68 |
+
test_type_decoded = decode_test_types(test_type_raw)
|
69 |
+
|
70 |
+
results.append({
|
71 |
+
"url": item["url"],
|
72 |
+
"adaptive_support": item["adaptive"],
|
73 |
+
"description": item["description"],
|
74 |
+
"duration": extract_duration(item["assessment_length"]),
|
75 |
+
"remote_support": item["remote"],
|
76 |
+
"test_type": test_type_decoded
|
77 |
+
})
|
78 |
+
|
79 |
+
# result = {
|
80 |
+
# "name": item["name"],
|
81 |
+
# "url": item["url"],
|
82 |
+
# "duration": item["assessment_length"],
|
83 |
+
# "remote": item["remote"],
|
84 |
+
# "adaptive": item["adaptive"]
|
85 |
+
# }
|
86 |
+
# results.append(result)
|
87 |
+
|
88 |
+
return results
|
89 |
+
|
90 |
+
def health():
|
91 |
+
return gr.JSON({"status": "healthy"})
|
92 |
+
|
93 |
+
def recommend(query):
|
94 |
+
recommended = find_top_k(query)
|
95 |
+
return gr.JSON({"recommended_assessments": recommended})
|
96 |
+
|
97 |
+
recommend_api = gr.Interface(fn=recommend, inputs=gr.Textbox(), outputs="json")
|
98 |
+
health_api = gr.Interface(fn=health, inputs=[], outputs="json")
|
99 |
+
|
100 |
+
# Gradio app with multiple endpoints
|
101 |
+
demo = gr.TabbedInterface(
|
102 |
+
interface_list=[recommend_api, health_api],
|
103 |
+
tab_names=["recommend", "health"]
|
104 |
+
)
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
demo.launch()
|
108 |
+
# Gradio Interface
|
109 |
+
|
110 |
+
# app = gr.Interface(
|
111 |
+
# fn=recommend,
|
112 |
+
# inputs=gr.Textbox(label="Job Description or Query"),
|
113 |
+
# outputs="json",
|
114 |
+
# examples=["Looking for java developer assessment", "Communication skills test"]
|
115 |
+
# )
|
116 |
+
|
117 |
+
# # Add `/health` route manually using FastAPI inside Gradio
|
118 |
+
# app.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True, inline=False)
|
119 |
+
# with gr.Blocks() as demo:
|
120 |
+
# gr.Markdown("### SHL Assessment Recommender")
|
121 |
+
|
122 |
+
# query_input = gr.Textbox(label="Job Query", placeholder="e.g. JavaScript Developer")
|
123 |
+
# duration_input = gr.Textbox(label="Assessment Duration (minutes)", placeholder="e.g. 30")
|
124 |
+
# topk_input = gr.Slider(label="Top K Results", minimum=1, maximum=10, step=1, value=5)
|
125 |
+
# output = gr.JSON(label="Top Matches")
|
126 |
+
|
127 |
+
# submit_btn = gr.Button("Submit")
|
128 |
+
|
129 |
+
# def process(query, duration, top_k):
|
130 |
+
# return find_top_k(query, duration, top_k)
|
131 |
+
|
132 |
+
# submit_btn.click(fn=process, inputs=[query_input, duration_input, topk_input], outputs=[output])
|
133 |
+
|
134 |
+
# demo.launch()
|
135 |
+
|
136 |
+
# def find_top_k(query_json, k=5):
|
137 |
+
# query_str = prepare_input(query_json)
|
138 |
+
|
139 |
+
# # Convert query to vector
|
140 |
+
# query_vec = model.encode([query_str], normalize_embeddings=True)
|
141 |
+
|
142 |
+
# # Cosine similarity with precomputed normalized embeddings
|
143 |
+
# scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
144 |
+
# ranked_indices = np.argsort(-scores)
|
145 |
+
|
146 |
+
# results = []
|
147 |
+
# for idx in ranked_indices[:k]:
|
148 |
+
# item = data_df.iloc[idx]
|
149 |
+
# result = {
|
150 |
+
# "name": item["name"],
|
151 |
+
# "url": item["url"],
|
152 |
+
# "remote_testing": item["remote"],
|
153 |
+
# "adaptive": item["adaptive"],
|
154 |
+
# "duration": item["assessment_length"],
|
155 |
+
# "test_type": item["test_types"],
|
156 |
+
# }
|
157 |
+
# results.append(result)
|
158 |
+
|
159 |
+
# return results
|
160 |
+
|
161 |
+
# # Gradio Interface
|
162 |
+
# with gr.Blocks() as demo:
|
163 |
+
# gr.Markdown("### RAG Gradio Demo with JSON Query")
|
164 |
+
|
165 |
+
# json_input = gr.Textbox(label="JSON Query (as JSON string)")
|
166 |
+
# output = gr.JSON(label="Top Matches from Data")
|
167 |
+
|
168 |
+
# def process(json_input_str):
|
169 |
+
# try:
|
170 |
+
# query_json = json.loads(json_input_str)
|
171 |
+
# results = find_top_k(query_json)
|
172 |
+
# return results
|
173 |
+
# except Exception as e:
|
174 |
+
# return {"error": str(e)}
|
175 |
+
|
176 |
+
# submit_btn = gr.Button("Submit")
|
177 |
+
# submit_btn.click(fn=process, inputs=[json_input], outputs=[output])
|
178 |
+
|
179 |
+
# demo.launch()
|
180 |
+
|
181 |
+
# import torch
|
182 |
+
# import pandas as pd
|
183 |
+
# import numpy as np
|
184 |
+
# import gradio as gr
|
185 |
+
# from sklearn.metrics.pairwise import cosine_similarity
|
186 |
+
# from sentence_transformers import util,SentenceTransformer
|
187 |
+
|
188 |
+
# # Load embeddings and data
|
189 |
+
# embeddings = torch.load("embeddings.pth") # shape: [377, 768]
|
190 |
+
# data_df = pd.read_csv("data.csv")
|
191 |
+
|
192 |
+
# def clean_query_text(text):
|
193 |
+
# replacements = {
|
194 |
+
# "Java Script": "JavaScript",
|
195 |
+
# "java script": "JavaScript",
|
196 |
+
# "Java script": "JavaScript"
|
197 |
+
# }
|
198 |
+
# for wrong, correct in replacements.items():
|
199 |
+
# text = text.replace(wrong, correct)
|
200 |
+
# return text
|
201 |
+
|
202 |
+
# def prepare_input(data):
|
203 |
+
# cleaned_query = clean_query_text(data.query)
|
204 |
+
# input_text = f"{cleaned_query}. Candidate should complete assessment in {data.duration} minutes."
|
205 |
+
# return input_text.strip()
|
206 |
+
|
207 |
+
# def find_top_k(query_json, k=5):
|
208 |
+
# query_str = prepare_input(query_json)
|
209 |
+
# # Convert query to vector
|
210 |
+
# from sentence_transformers import SentenceTransformer
|
211 |
+
# model = SentenceTransformer("all-MiniLM-L6-v2")
|
212 |
+
# query_vec = model.encode([query_str], normalize_embeddings=True)
|
213 |
+
# scores = util.cos_sim(query_vec, embeddings)[0].numpy()
|
214 |
+
# ranked_indices = np.argsort(-scores)
|
215 |
+
|
216 |
+
# results = []
|
217 |
+
# for idx in ranked_indices:
|
218 |
+
# item = data_df.iloc[idx]
|
219 |
+
# print(f"Matched: {item['name']} with duration {item['assessment_length']}")
|
220 |
+
|
221 |
+
# result = {
|
222 |
+
# "name": item["name"],
|
223 |
+
# "url": item["url"],
|
224 |
+
# "remote_testing": item["remote"],
|
225 |
+
# "adaptive": item["adaptive"],
|
226 |
+
# "duration": item['assessment_length'],
|
227 |
+
# "test_type": item["test_types"],
|
228 |
+
# }
|
229 |
+
# results.append(result)
|
230 |
+
|
231 |
+
# if len(results) >= top_k:
|
232 |
+
# break
|
233 |
+
|
234 |
+
# return results
|
235 |
+
|
236 |
+
|
237 |
+
# # Compute similarity
|
238 |
+
# # similarities = cosine_similarity(query_vec, embeddings.numpy())[0]
|
239 |
+
# # top_indices = similarities.argsort()[-k:][::-1]
|
240 |
+
|
241 |
+
# # results = data_df.iloc[top_indices].to_dict(orient="records")
|
242 |
+
# # return results
|
243 |
+
|
244 |
+
# with gr.Blocks() as demo:
|
245 |
+
# gr.Markdown("### RAG Gradio Demo with JSON Query")
|
246 |
+
|
247 |
+
# json_input = gr.Textbox(label="JSON Query (as string)")
|
248 |
+
# output = gr.JSON(label="Top Matches from Data")
|
249 |
+
|
250 |
+
# def process(json_input_str):
|
251 |
+
# try:
|
252 |
+
# import json
|
253 |
+
# query_json = json.loads(json_input_str)
|
254 |
+
# results = find_top_k(query_json)
|
255 |
+
# return results
|
256 |
+
# except Exception as e:
|
257 |
+
# return {"error": str(e)}
|
258 |
+
|
259 |
+
# submit_btn = gr.Button("Submit")
|
260 |
+
# submit_btn.click(fn=process, inputs=[json_input], outputs=[output])
|
261 |
+
|
262 |
+
# demo.launch()
|