File size: 2,345 Bytes
19ec175
 
 
 
 
0da0b1f
 
 
 
19ec175
 
0da0b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ec175
 
0da0b1f
19ec175
 
 
 
 
0da0b1f
 
 
 
 
19ec175
 
 
0da0b1f
19ec175
0da0b1f
 
19ec175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da0b1f
 
19ec175
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import gradio as gr
from z_app_factory import get_app


thickness = 3
lineType = 8
font = cv2.FONT_HERSHEY_SIMPLEX

def inference(image):
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    code,lst2d_res = get_app(image)
    msg = "aaa"
    if code == 401:
        msg = "Not RGB three channel picture"
    elif code == 402:
        msg = "Pixels less than 32 * 32"
    elif code == 403:
        msg = "Pixels greater than 4096 * 4096"
    elif code == 404:
        msg = "Files greater than 5MB"
    elif code == 405:
        msg = "System error, please contact\n the server for troubleshooting"

    if code!=200:
        img_out = np.zeros((500, 600,3),dtype=np.uint8)
        cv2.putText(img_out, msg, (20, 200), font, 1, (0, 255, 0), 2)
        return img_out

    for face in lst2d_res:

        bbox = [int(i) for i in face["bbox"]]
        score = face['score']
        point_color = (0, int(255 * score), 0) # BGR
        x1, y1 = bbox[:2]
        x2, y2 = bbox[2:]
        cv2.putText(image, str(score)[:4], (x1, y1 - 10), font, 0.8, (0, 255, 0), 2)
        cv2.line(image, (x1, y1), (x2, y1), point_color, thickness, lineType)
        cv2.line(image, (x2, y1), (x2, y2), point_color, thickness, lineType)
        cv2.line(image, (x1, y1), (x1, y2), point_color, thickness, lineType)
        cv2.line(image, (x1, y2), (x2, y2), point_color, thickness, lineType)

        for kp in face["kps"]:
            x, y = [int(i) for i in kp]
            cv2.circle(image, (x, y), 2, (2, 30, 200), 2)

    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    return image



title = "Detect Face"
description = "demo for Detect Face. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://www.yuque.com/itmorn/ability/detect_face' target='_blank'>Project Documents</a> | <a href='https://www.bilibili.com/video/BV1cg411v7CR' target='_blank'>Video Demo</a></p>"

gr.Interface(
    inference,
    [gr.inputs.Image(label="Input")],
    gr.outputs.Image(type="pil", label="Output"),
    title=title,
    description=description,
    article=article,
    examples=[
              ["imgs/face1.jpg"],
              ["imgs/face2.jpg"],
              ["imgs/cc.png"],
              ["imgs/2313.png"]
    ]).launch(debug=True)