from importlib.metadata import version from timeit import default_timer as timer import gradio as gr import numpy as np import onnx_asr print(f"onnx_asr version: {version('onnx_asr')}") models = { name: onnx_asr.load_model(name) for name in [ "gigaam-v2-ctc", "gigaam-v2-rnnt", "nemo-fastconformer-ru-ctc", "nemo-fastconformer-ru-rnnt", "alphacep/vosk-model-ru", "alphacep/vosk-model-small-ru", "whisper-base", ] } def recognize(audio: tuple[int, np.ndarray]): sample_rate, waveform = audio try: waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1) results = [] for name, model in models.items(): start = timer() result = model.recognize(waveform, sample_rate=sample_rate, language="ru") time = timer() - start results.append([name, result, f"{time:.3f} s."]) except Exception as e: raise gr.Error(f"{e} Audio: sample_rate: {sample_rate}, waveform.shape: {waveform.shape}.") from e else: return results with gr.Blocks() as demo: gr.Markdown(""" # ASR demo using onnx-asr (Russian models) **[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models. The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`). """) input = gr.Audio(min_length=1, max_length=20) with gr.Row(): gr.ClearButton(input) btn = gr.Button("Recognize", variant="primary") output = gr.Dataframe(headers=["model", "result", "time"], wrap=True) btn.click(fn=recognize, inputs=input, outputs=output) with gr.Accordion("ASR models used in this demo", open=False): gr.Markdown(""" * `gigaam-v2-ctc` - Sber GigaAM v2 CTC ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) * `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) * `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) * `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) * `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru)) * `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru)) * `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx)) """) demo.launch()