istupakov commited on
Commit
9fe1d46
·
verified ·
1 Parent(s): db30825

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -1
app.py CHANGED
@@ -54,6 +54,7 @@ def recognize(audio: tuple[int, np.ndarray], models, language):
54
  results = []
55
  for name, model in models.items():
56
  if length > 20 and name == "alphacep/vosk-model-small-ru":
 
57
  continue
58
  start = timer()
59
  result = model.recognize(waveform, sample_rate=sample_rate, language=language)
@@ -110,7 +111,7 @@ with gr.Blocks() as recognize_short:
110
 
111
 
112
  with gr.Blocks() as recognize_long:
113
- gr.Markdown("For better results, you need to adjust the VAD parameters.")
114
  name = gr.Dropdown(models_vad.keys(), label="Model")
115
  audio = gr.Audio(min_length=1, max_length=300)
116
  with gr.Row():
@@ -135,6 +136,13 @@ with gr.Blocks(title="onnx-asr demo") as demo:
135
  # ASR demo using onnx-asr
136
  **[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
137
  The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
 
 
 
 
 
 
 
138
  """)
139
  gr.TabbedInterface(
140
  [recognize_short, recognize_long],
 
54
  results = []
55
  for name, model in models.items():
56
  if length > 20 and name == "alphacep/vosk-model-small-ru":
57
+ gr.Warning(f"Model {name} only supports audio no longer than 20 s.")
58
  continue
59
  start = timer()
60
  result = model.recognize(waveform, sample_rate=sample_rate, language=language)
 
111
 
112
 
113
  with gr.Blocks() as recognize_long:
114
+ gr.Markdown("The default VAD parameters are used. For best results, you should adjust the VAD parameters in your app.")
115
  name = gr.Dropdown(models_vad.keys(), label="Model")
116
  audio = gr.Audio(min_length=1, max_length=300)
117
  with gr.Row():
 
136
  # ASR demo using onnx-asr
137
  **[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
138
  The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
139
+
140
+ **onnx-asr** is very easy to use (see [Readme](https://github.com/istupakov/onnx-asr?tab=readme-ov-file) for more examples):
141
+ ```py
142
+ import onnx_asr
143
+ model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v2")
144
+ print(model.recognize("test.wav"))
145
+ ```
146
  """)
147
  gr.TabbedInterface(
148
  [recognize_short, recognize_long],