Update app.py
Browse files
app.py
CHANGED
@@ -54,6 +54,7 @@ def recognize(audio: tuple[int, np.ndarray], models, language):
|
|
54 |
results = []
|
55 |
for name, model in models.items():
|
56 |
if length > 20 and name == "alphacep/vosk-model-small-ru":
|
|
|
57 |
continue
|
58 |
start = timer()
|
59 |
result = model.recognize(waveform, sample_rate=sample_rate, language=language)
|
@@ -110,7 +111,7 @@ with gr.Blocks() as recognize_short:
|
|
110 |
|
111 |
|
112 |
with gr.Blocks() as recognize_long:
|
113 |
-
gr.Markdown("For
|
114 |
name = gr.Dropdown(models_vad.keys(), label="Model")
|
115 |
audio = gr.Audio(min_length=1, max_length=300)
|
116 |
with gr.Row():
|
@@ -135,6 +136,13 @@ with gr.Blocks(title="onnx-asr demo") as demo:
|
|
135 |
# ASR demo using onnx-asr
|
136 |
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
|
137 |
The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
""")
|
139 |
gr.TabbedInterface(
|
140 |
[recognize_short, recognize_long],
|
|
|
54 |
results = []
|
55 |
for name, model in models.items():
|
56 |
if length > 20 and name == "alphacep/vosk-model-small-ru":
|
57 |
+
gr.Warning(f"Model {name} only supports audio no longer than 20 s.")
|
58 |
continue
|
59 |
start = timer()
|
60 |
result = model.recognize(waveform, sample_rate=sample_rate, language=language)
|
|
|
111 |
|
112 |
|
113 |
with gr.Blocks() as recognize_long:
|
114 |
+
gr.Markdown("The default VAD parameters are used. For best results, you should adjust the VAD parameters in your app.")
|
115 |
name = gr.Dropdown(models_vad.keys(), label="Model")
|
116 |
audio = gr.Audio(min_length=1, max_length=300)
|
117 |
with gr.Row():
|
|
|
136 |
# ASR demo using onnx-asr
|
137 |
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
|
138 |
The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
|
139 |
+
|
140 |
+
**onnx-asr** is very easy to use (see [Readme](https://github.com/istupakov/onnx-asr?tab=readme-ov-file) for more examples):
|
141 |
+
```py
|
142 |
+
import onnx_asr
|
143 |
+
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v2")
|
144 |
+
print(model.recognize("test.wav"))
|
145 |
+
```
|
146 |
""")
|
147 |
gr.TabbedInterface(
|
148 |
[recognize_short, recognize_long],
|