Spaces:
Sleeping
Sleeping
Upload presidio_streamlit.py
Browse files- presidio_streamlit.py +293 -0
presidio_streamlit.py
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Streamlit app for Presidio."""
|
| 2 |
+
|
| 3 |
+
from json import JSONEncoder
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import spacy
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from annotated_text import annotated_text
|
| 10 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
|
| 11 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
| 12 |
+
from presidio_anonymizer import AnonymizerEngine
|
| 13 |
+
from presidio_anonymizer.entities import OperatorConfig
|
| 14 |
+
|
| 15 |
+
from transformers_rec import (
|
| 16 |
+
STANFORD_COFIGURATION,
|
| 17 |
+
TransformersRecognizer,
|
| 18 |
+
BERT_DEID_CONFIGURATION,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Helper methods
|
| 23 |
+
@st.cache_resource
|
| 24 |
+
def analyzer_engine(model_path: str):
|
| 25 |
+
"""Return AnalyzerEngine.
|
| 26 |
+
|
| 27 |
+
:param model_path: Which model to use for NER:
|
| 28 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
| 29 |
+
"obi/deid_roberta_i2b2",
|
| 30 |
+
"en_core_web_lg"
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
registry = RecognizerRegistry()
|
| 34 |
+
registry.load_predefined_recognizers()
|
| 35 |
+
|
| 36 |
+
# Set up NLP Engine according to the model of choice
|
| 37 |
+
if model_path == "en_core_web_lg":
|
| 38 |
+
if not spacy.util.is_package("en_core_web_lg"):
|
| 39 |
+
spacy.cli.download("en_core_web_lg")
|
| 40 |
+
nlp_configuration = {
|
| 41 |
+
"nlp_engine_name": "spacy",
|
| 42 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
|
| 43 |
+
}
|
| 44 |
+
else:
|
| 45 |
+
if not spacy.util.is_package("en_core_web_sm"):
|
| 46 |
+
spacy.cli.download("en_core_web_sm")
|
| 47 |
+
# Using a small spaCy model + a HF NER model
|
| 48 |
+
transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
| 49 |
+
|
| 50 |
+
if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
| 51 |
+
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
| 52 |
+
elif model_path == "obi/deid_roberta_i2b2":
|
| 53 |
+
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
| 54 |
+
|
| 55 |
+
# Use small spaCy model, no need for both spacy and HF models
|
| 56 |
+
# The transformers model is used here as a recognizer, not as an NlpEngine
|
| 57 |
+
nlp_configuration = {
|
| 58 |
+
"nlp_engine_name": "spacy",
|
| 59 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
registry.add_recognizer(transformers_recognizer)
|
| 63 |
+
|
| 64 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
| 65 |
+
|
| 66 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
|
| 67 |
+
return analyzer
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@st.cache_resource
|
| 71 |
+
def anonymizer_engine():
|
| 72 |
+
"""Return AnonymizerEngine."""
|
| 73 |
+
return AnonymizerEngine()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@st.cache_data
|
| 77 |
+
def get_supported_entities():
|
| 78 |
+
"""Return supported entities from the Analyzer Engine."""
|
| 79 |
+
return analyzer_engine(st_model).get_supported_entities()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@st.cache_data
|
| 83 |
+
def analyze(**kwargs):
|
| 84 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
| 85 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
| 86 |
+
kwargs["entities"] = None
|
| 87 |
+
return analyzer_engine(st_model).analyze(**kwargs)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def anonymize(text: str, analyze_results: List[RecognizerResult]):
|
| 91 |
+
"""Anonymize identified input using Presidio Anonymizer.
|
| 92 |
+
|
| 93 |
+
:param text: Full text
|
| 94 |
+
:param analyze_results: list of results from presidio analyzer engine
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
if st_operator == "mask":
|
| 98 |
+
operator_config = {
|
| 99 |
+
"type": "mask",
|
| 100 |
+
"masking_char": st_mask_char,
|
| 101 |
+
"chars_to_mask": st_number_of_chars,
|
| 102 |
+
"from_end": False,
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
elif st_operator == "encrypt":
|
| 106 |
+
operator_config = {"key": st_encrypt_key}
|
| 107 |
+
elif st_operator == "highlight":
|
| 108 |
+
operator_config = {"lambda": lambda x: x}
|
| 109 |
+
else:
|
| 110 |
+
operator_config = None
|
| 111 |
+
|
| 112 |
+
if st_operator == "highlight":
|
| 113 |
+
operator = "custom"
|
| 114 |
+
else:
|
| 115 |
+
operator = st_operator
|
| 116 |
+
|
| 117 |
+
res = anonymizer_engine().anonymize(
|
| 118 |
+
text,
|
| 119 |
+
analyze_results,
|
| 120 |
+
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
|
| 121 |
+
)
|
| 122 |
+
return res
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def annotate(text: str, analyze_results: List[RecognizerResult]):
|
| 126 |
+
"""
|
| 127 |
+
Highlights every identified entity on top of the text.
|
| 128 |
+
:param text: full text
|
| 129 |
+
:param analyze_results: list of analyzer results.
|
| 130 |
+
"""
|
| 131 |
+
tokens = []
|
| 132 |
+
|
| 133 |
+
# Use the anonymizer to resolve overlaps
|
| 134 |
+
results = anonymize(text, analyze_results)
|
| 135 |
+
|
| 136 |
+
# sort by start index
|
| 137 |
+
results = sorted(results.items, key=lambda x: x.start)
|
| 138 |
+
for i, res in enumerate(results):
|
| 139 |
+
if i == 0:
|
| 140 |
+
tokens.append(text[: res.start])
|
| 141 |
+
|
| 142 |
+
# append entity text and entity type
|
| 143 |
+
tokens.append((text[res.start: res.end], res.entity_type))
|
| 144 |
+
|
| 145 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
| 146 |
+
if i != len(results) - 1:
|
| 147 |
+
tokens.append(text[res.end: results[i + 1].start])
|
| 148 |
+
# if no more entities coming, add all remaining text
|
| 149 |
+
else:
|
| 150 |
+
tokens.append(text[res.end:])
|
| 151 |
+
return tokens
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
st.set_page_config(page_title="Presidio demo", layout="wide")
|
| 155 |
+
|
| 156 |
+
# Sidebar
|
| 157 |
+
st.sidebar.header(
|
| 158 |
+
"""
|
| 159 |
+
PII De-Identification with Microsoft Presidio
|
| 160 |
+
"""
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
st.sidebar.info(
|
| 164 |
+
"Presidio is an open source customizable framework for PII detection and de-identification\n"
|
| 165 |
+
"[Code](https://aka.ms/presidio) | "
|
| 166 |
+
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
|
| 167 |
+
"[Installation](https://microsoft.github.io/presidio/installation/) | "
|
| 168 |
+
"[FAQ](https://microsoft.github.io/presidio/faq/)",
|
| 169 |
+
icon="ℹ️",
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
st.sidebar.markdown(
|
| 173 |
+
"[](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
|
| 174 |
+
"[](http://opensource.org/licenses/MIT)"
|
| 175 |
+
""
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
st_model = st.sidebar.selectbox(
|
| 179 |
+
"NER model",
|
| 180 |
+
[
|
| 181 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
| 182 |
+
"obi/deid_roberta_i2b2",
|
| 183 |
+
"en_core_web_lg",
|
| 184 |
+
],
|
| 185 |
+
index=1,
|
| 186 |
+
)
|
| 187 |
+
st.sidebar.markdown("> Note: Models might take some time to download. ")
|
| 188 |
+
|
| 189 |
+
st_operator = st.sidebar.selectbox(
|
| 190 |
+
"De-identification approach",
|
| 191 |
+
["redact", "replace", "mask", "hash", "encrypt", "highlight"],
|
| 192 |
+
index=1,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if st_operator == "mask":
|
| 196 |
+
st_number_of_chars = st.sidebar.number_input(
|
| 197 |
+
"number of chars", value=15, min_value=0, max_value=100
|
| 198 |
+
)
|
| 199 |
+
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
|
| 200 |
+
elif st_operator == "encrypt":
|
| 201 |
+
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
|
| 202 |
+
|
| 203 |
+
st_threshold = st.sidebar.slider(
|
| 204 |
+
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
st_return_decision_process = st.sidebar.checkbox(
|
| 208 |
+
"Add analysis explanations to findings", value=False
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
st_entities = st.sidebar.multiselect(
|
| 212 |
+
label="Which entities to look for?",
|
| 213 |
+
options=get_supported_entities(),
|
| 214 |
+
default=list(get_supported_entities()),
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Main panel
|
| 218 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
| 219 |
+
engine = analyzer_engine(model_path=st_model)
|
| 220 |
+
analyzer_load_state.empty()
|
| 221 |
+
|
| 222 |
+
# Read default text
|
| 223 |
+
with open("demo_text.txt") as f:
|
| 224 |
+
demo_text = f.readlines()
|
| 225 |
+
|
| 226 |
+
# Create two columns for before and after
|
| 227 |
+
col1, col2 = st.columns(2)
|
| 228 |
+
|
| 229 |
+
# Before:
|
| 230 |
+
col1.subheader("Input string:")
|
| 231 |
+
st_text = col1.text_area(
|
| 232 |
+
label="Enter text",
|
| 233 |
+
value="".join(demo_text),
|
| 234 |
+
height=400,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
st_analyze_results = analyze(
|
| 238 |
+
text=st_text,
|
| 239 |
+
entities=st_entities,
|
| 240 |
+
language="en",
|
| 241 |
+
score_threshold=st_threshold,
|
| 242 |
+
return_decision_process=st_return_decision_process,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# After
|
| 246 |
+
if st_operator != "highlight":
|
| 247 |
+
with col2:
|
| 248 |
+
st.subheader(f"Output")
|
| 249 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
| 250 |
+
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
|
| 251 |
+
else:
|
| 252 |
+
st.subheader("Highlighted")
|
| 253 |
+
annotated_tokens = annotate(st_text, st_analyze_results)
|
| 254 |
+
# annotated_tokens
|
| 255 |
+
annotated_text(*annotated_tokens)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# json result
|
| 259 |
+
class ToDictEncoder(JSONEncoder):
|
| 260 |
+
"""Encode dict to json."""
|
| 261 |
+
|
| 262 |
+
def default(self, o):
|
| 263 |
+
"""Encode to JSON using to_dict."""
|
| 264 |
+
return o.to_dict()
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# table result
|
| 268 |
+
st.subheader(
|
| 269 |
+
"Findings" if not st_return_decision_process else "Findings with decision factors"
|
| 270 |
+
)
|
| 271 |
+
if st_analyze_results:
|
| 272 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
| 273 |
+
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
| 274 |
+
|
| 275 |
+
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
| 276 |
+
{
|
| 277 |
+
"entity_type": "Entity type",
|
| 278 |
+
"text": "Text",
|
| 279 |
+
"start": "Start",
|
| 280 |
+
"end": "End",
|
| 281 |
+
"score": "Confidence",
|
| 282 |
+
},
|
| 283 |
+
axis=1,
|
| 284 |
+
)
|
| 285 |
+
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
| 286 |
+
if st_return_decision_process:
|
| 287 |
+
analysis_explanation_df = pd.DataFrame.from_records(
|
| 288 |
+
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
| 289 |
+
)
|
| 290 |
+
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
| 291 |
+
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
| 292 |
+
else:
|
| 293 |
+
st.text("No findings")
|