File size: 17,144 Bytes
f14de11
 
 
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
 
144e90e
f14de11
 
144e90e
 
 
b4d6c91
144e90e
 
 
 
 
 
 
f14de11
144e90e
f14de11
 
 
144e90e
 
 
 
 
 
 
 
 
 
 
 
f14de11
 
144e90e
 
 
 
 
 
 
 
 
f14de11
 
 
144e90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d6c91
144e90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d6c91
144e90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14de11
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17fbe2
 
144e90e
 
 
 
 
 
 
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17fbe2
f14de11
144e90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
144e90e
 
 
 
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
 
144e90e
f14de11
 
 
144e90e
 
f14de11
 
 
 
 
144e90e
f14de11
 
 
 
 
144e90e
f14de11
 
 
144e90e
 
 
 
 
 
 
f14de11
144e90e
f14de11
 
 
 
144e90e
 
 
 
 
 
 
f14de11
144e90e
f14de11
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
144e90e
f14de11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import base64
import io
from loguru import logger as log
from pathlib import Path
import gradio as gr
from PIL import Image
import iscc_core as ic
import iscc_sdk as idk
import iscc_schema as iss
import iscc_sci as sci
import plotly.graph_objects as go
import pandas as pd


idk.sdk_opts.image_thumbnail_size = 265
idk.sdk_opts.image_thumbnail_quality = 80


HERE = Path(__file__).parent.absolute()
IMAGES1 = HERE / "images1"
IMAGES2 = HERE / "images2"


custom_css = """
.fixed-height {
    height: 240px;  /* Fixed height */
    object-fit: contain;  /* Scale the image to fit within the element */
}

.small-height {
    display: flex;        /* Use flexbox layout */
    flex-direction: column; /* Arrange children vertically */
    justify-content: flex-end; /* Align children to the end (bottom) */
    height: 85px;        /* Fixed height */
    object-fit: contain;  /* Scale the content to fit within the element */
}

.bit-matrix-big {
    display: flex;
    flex-direction: column;
    justify-content: flex-end;
    height: 120px;        /* Fixed height */
    object-fit: contain;  /* Scale the content to fit within the element */
}

.iscc-unit-sim {
    display: flex;
    flex-direction: column;
    justify-content: flex-end;
    height: 120px;        /* Fixed height */
    object-fit: contain;  /* Scale the content to fit within the element */
}

.modebar-btn {
    display: none !important;
}

#examples-a, #examples-b {
    height: 140px;  /* Fixed height */
    object-fit: contain;  /* Scale the image to fit within the element */
}
"""


def iscc_semantic(filepath: str) -> idk.IsccMeta:
    """Generate ISCC-CODE extended with Semantic-Code for supported modalities (Image)"""
    imeta = idk.code_iscc(filepath)
    if imeta.mode == "image":
        # Inject Semantic-Code
        sci_code = sci.code_image_semantic(filepath, bits=64)["iscc"]
        units = ic.iscc_decompose(imeta.iscc)
        units.append(sci_code)
        iscc_code_s = ic.gen_iscc_code(units)["iscc"]
        imeta.iscc = iscc_code_s
    return imeta


def dist_to_sim(data, dim=64):
    result = {}
    for k, v in data.items():
        if k == "instance_match":
            result[k.split("_")[0].title()] = 1.0 if v is True else -1.0
        else:
            result[k.split("_")[0].title()] = hamming_to_cosine(v, dim)
    return result


def hamming_to_cosine(hamming_distance: int, dim: int) -> float:
    """Aproximate the cosine similarity for a given hamming distance and dimension"""
    result = 1 - (2 * hamming_distance) / dim
    log.debug(f"Hamming distance: {hamming_distance} - Dim: {dim} - Result: {result}")
    return result


def similarity_plot(sim_data):
    # type: (dict) -> go.Figure
    # Convert input dictionary to DataFrame, sort by value for visual consistency
    data_df = pd.DataFrame(reversed(sim_data.items()), columns=["Category", "Value"])
    data_df["Percentage"] = data_df["Value"] * 100  # Convert to percentage

    # Define color for bars based on value
    data_df["Color"] = ["#f56169" if x < 0 else "#a6db50" for x in data_df["Value"]]

    # Create Plotly Figure
    fig = go.Figure()
    fig.add_trace(
        go.Bar(
            x=data_df["Value"],
            y=data_df["Category"],
            orientation="h",
            marker_color=data_df["Color"],
            marker_line={"width": 0},
            text=data_df["Percentage"].apply(lambda x: f"{x:.2f}%"),
            textposition="inside",
            textfont={
                "size": 14,
                "family": "JetBrains Mono",
                "color": "white",
            },
            hoverinfo=None,
            hovertemplate="ISCC-UNIT: %{y}<br>SIMILARITY: %{x}<extra></extra>",
            hoverlabel={
                "font": {"family": "JetBrains Mono", "color": "#FFFFFF"},
                "bgcolor": "#444444",
            },
        )
    )

    # Update layout for aesthetics
    fig.update_layout(
        height=len(sim_data) * 40,
        autosize=True,
        xaxis=dict(
            title="",
            tickformat=",.0%",
            showticklabels=False,
        ),
        yaxis=dict(
            title="",
            showticklabels=False,
        ),
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
        showlegend=False,
        modebar_remove=[
            "toImage",
            "zoom",
            "pan",
            "zoomIn",
            "zoomOut",
            "autoScale",
            "resetScale",
        ],
    )

    # Adjust the x-axis to accommodate percentage labels
    fig.update_xaxes(
        range=[-1.1, 1.1],
        fixedrange=False,
        showline=False,
        zeroline=False,
        showgrid=False,
        gridcolor="rgba(0,0,0,0)",
    )

    return fig


def bit_matrix_plot(iscc_code):
    # type: (ic.Code) -> go.Figure
    """
    Create a bit matrix plot for an ISCC-CODE
    """

    # Decode ISCC-CODE
    data = {}
    for unit in ic.iscc_decompose(iscc_code.code):
        unit = ic.Code(unit)
        data[unit.type_id.split("-")[0]] = unit.hash_bits

    # Prepare data for heatmap
    z = []
    for key, value in data.items():
        z.append([int(bit) for bit in value])

    # Define colors for 0 and 1 bits
    colorscale = [[0, "#7ac2f7"], [1, "#0054b2"]]

    # Build Plotly Visualization
    fig = go.Figure(
        data=go.Heatmap(
            z=z,
            xgap=2,
            ygap=2,
            showscale=False,
            colorscale=colorscale,
            hoverinfo="x+y",
            hovertemplate="ISCC-UNIT: %{y}<br>BIT-NUMBR: %{x}<br>BIT-VALUE: %{z}<extra></extra>",
            hoverlabel={
                "font": {"family": "JetBrains Mono"},
            },
        )
    )

    fig.update_layout(
        height=60,
        autosize=True,
        xaxis=dict(
            ticks="",
            side="top",
            scaleanchor="y",
            constrain="domain",
            showticklabels=False,
        ),
        yaxis=dict(
            ticks="",
            tickvals=list(range(len(data))),
            ticktext=list(data.keys()),
            side="left",
            autorange="reversed",
            showticklabels=False,
        ),
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
        margin=dict(l=10, r=10, t=0, b=10),
        modebar_remove=[
            "toImage",
            "zoom",
            "pan",
            "zoomIn",
            "zoomOut",
            "autoScale",
            "resetScale",
        ],
    )

    fig.update_xaxes(
        fixedrange=False,
        showline=False,
        zeroline=False,
        showgrid=False,
        gridcolor="rgba(0,0,0,0)",
    )
    fig.update_yaxes(
        fixedrange=False,
        showline=False,
        zeroline=False,
        showgrid=False,
        gridcolor="rgba(0,0,0,0)",
    )

    return fig


def bit_comparison(iscc_code1, iscc_code2):
    """
    Create a comparison bit matrix plot for two ISCC-CODES
    """

    # Decode ISCC-CODEs
    data1, data2 = {}, {}
    for unit in ic.iscc_decompose(iscc_code1):
        unit = ic.Code(unit)
        data1[unit.type_id.split("-")[0]] = unit.hash_bits
    for unit in ic.iscc_decompose(iscc_code2):
        unit = ic.Code(unit)
        data2[unit.type_id.split("-")[0]] = unit.hash_bits

    # Prepare data for heatmap comparison
    z = []
    text = []
    for key in data1.keys():
        z_row = []
        text_row = []
        for bit1, bit2 in zip(data1[key], data2.get(key, "")):
            if bit1 == bit2:
                z_row.append(int(bit1))
                text_row.append(bit1)
            else:
                z_row.append(2)
                text_row.append("x")
        z.append(z_row)
        text.append(text_row)

    # Define colors for 0, 1, and non-matching bits
    colorscale = [[0, "#a6db50"], [0.5, "#a6db50"], [1, "#f56169"]]

    fig = go.Figure(
        data=go.Heatmap(
            z=z,
            text=text,
            xgap=2,
            ygap=2,
            showscale=False,
            colorscale=colorscale,
            hoverinfo="text",
            hovertemplate="ISCC-UNIT: %{y}<br>BIT-NUMBR: %{x}<br>BIT-VALUE: %{z}<extra></extra>",
            hoverlabel={
                "font": {"family": "JetBrains Mono"},
            },
            texttemplate="%{text}",  # Use "%{text}" for showing bits
            textfont={
                "size": 14,
                "color": "#FFFFFF",
                "family": "JetBrains Mono",
            },
        )
    )

    fig.update_layout(
        height=120,
        autosize=True,
        xaxis=dict(
            ticks="",
            side="top",
            scaleanchor="y",
            constrain="domain",
            showticklabels=False,
        ),
        yaxis=dict(
            ticks="",
            tickvals=list(range(len(data1))),
            ticktext=list(data1.keys()),
            side="left",
            autorange="reversed",
            showticklabels=False,
        ),
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
        margin=dict(l=0, r=0, t=0, b=0),
        modebar_remove=[
            "toImage",
            "zoom",
            "pan",
            "zoomIn",
            "zoomOut",
            "autoScale",
            "resetScale",
        ],
    )

    fig.update_xaxes(
        fixedrange=False,
        showline=False,
        zeroline=False,
        showgrid=False,
        gridcolor="rgba(0,0,0,0)",
    )
    fig.update_yaxes(
        fixedrange=False,
        showline=False,
        zeroline=False,
        showgrid=False,
        gridcolor="rgba(0,0,0,0)",
    )

    return fig


with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("## ⚙️ ISCC Similarity Comparison")

    with gr.Row(variant="default", equal_height=True):
        with gr.Column(variant="compact"):
            in_file_a = gr.File(
                label="Media File A", type="filepath", elem_classes=["fixed-height"]
            )
            out_thumb_a = gr.Image(
                label="Extracted Thumbnail",
                visible=False,
                height=240,
                elem_classes=["fixed-height"],
                interactive=True,
                show_download_button=False,
                sources=["upload"],
            )

            # Proxy component to patch image example selection -> gr.File
            dumy_image_a = gr.Image(visible=False, type="filepath", height=240)

            gr.Examples(
                examples=IMAGES1.as_posix(),
                cache_examples=False,
                inputs=[dumy_image_a],
                elem_id="examples-a",
            )

            out_iscc_a = gr.Text(label="ISCC", show_copy_button=True)

            with gr.Accordion(label="Details", open=False):
                out_dna_a = gr.Plot(
                    label="BIT-MATRIX",
                    container=True,
                    elem_classes=["small-height"],
                )
                out_meta_a = gr.Code(language="json", label="ISCC Metadata")

        with gr.Column(variant="compact"):
            in_file_b = gr.File(
                label="Media File B", type="filepath", elem_classes=["fixed-height"]
            )

            out_thumb_b = gr.Image(
                label="Extracted Thumbnail",
                visible=False,
                height=240,
                elem_classes=["fixed-height"],
                interactive=True,
                show_download_button=False,
                sources=["upload"],
            )

            # Proxy component to patch image example selection -> gr.File
            dumy_image_b = gr.Image(visible=False, type="filepath", height=240)

            gr.Examples(
                examples=IMAGES2.as_posix(),
                cache_examples=False,
                inputs=[dumy_image_b],
                elem_id="examples-b",
            )

            out_iscc_b = gr.Text(label="ISCC", show_copy_button=True)

            with gr.Accordion(
                label="Details",
                open=False,
            ):
                out_dna_b = gr.Plot(
                    label="BIT-MATRIX",
                    container=True,
                    elem_classes=["small-height"],
                )
                out_meta_b = gr.Code(language="json", label="ISCC Metadata")

    with gr.Row(variant="default", equal_height=True):
        with gr.Column(variant="compact"):
            out_bitcompare = gr.Plot(
                label="BIT-MATRIX Comparison",
                container=True,
                elem_classes=["bit-matrix-big"],
            )

    with gr.Row(variant="default", equal_height=True):
        with gr.Column(variant="compact"):
            out_compare = gr.Plot(
                label="ISCC-UNIT Similarities",
                container=True,
                elem_classes=["iscc-unit-sim"],
            )

    # Custom footer
    footer = (
        "https://github.com/iscc"
        f" | iscc-core v{ic.__version__}"
        f" | iscc-sdk v{idk.__version__}"
        f" | iscc-sci v{sci.__version__}"
        f" | iscc-schema v{iss.__version__}"
    )
    gr.Markdown(
        footer,
    )

    def rewrite_uri(filepath, sample_set):
        # type: (str, str) -> str
        """Rewrites temporary image URI to original sample URI"""
        if filepath:
            inpath = Path(filepath)
            outpath = HERE / f"{sample_set}/{inpath.name.replace('jpeg', 'jpg')}"

            log.info(filepath)
            return outpath.as_posix()

    def process_upload(filepath, suffix):
        # type: (str, str) -> dict
        """Generate extended ISCC with experimental Semantic Code (for images)"""

        # Map to active component group
        in_file_func = globals().get(f"in_file_{suffix}")
        out_thumb_func = globals().get(f"out_thumb_{suffix}")
        out_iscc_func = globals().get(f"out_iscc_{suffix}")
        out_dna_func = globals().get(f"out_dna_{suffix}")
        out_meta_func = globals().get(f"out_meta_{suffix}")

        # Handle emtpy filepath
        if not filepath:
            return {
                in_file_func: None,
            }

        imeta: idk.IsccMeta = iscc_semantic(filepath)

        # Create Bit-Matrix Plot
        matrix_plot = bit_matrix_plot(imeta.iscc_obj)

        # Pop Thumbnail for Preview
        thumbnail = None
        if imeta.thumbnail:
            header, encoded = imeta.thumbnail.split(",", 1)
            data = base64.b64decode(encoded)
            thumbnail = Image.open(io.BytesIO(data))
            imeta.thumbnail = None

        result = {
            in_file_func: gr.File(visible=False, value=None),
            out_thumb_func: gr.Image(visible=True, value=thumbnail),
            out_iscc_func: imeta.iscc,
            out_dna_func: matrix_plot,
            out_meta_func: imeta.json(exclude_unset=False, by_alias=True, indent=2),
        }

        return result

    def iscc_compare(iscc_a, iscc_b):
        # type: (str, str) -> dict | None
        """Compare two ISCCs"""
        if not all([iscc_a, iscc_b]):
            return None, None
        dist_data = ic.iscc_compare(iscc_a, iscc_b)
        sim_data = dist_to_sim(dist_data, dim=64)
        sim_plot = similarity_plot(sim_data)
        bit_plot = bit_comparison(iscc_a, iscc_b)
        return sim_plot, bit_plot

    # Events
    in_file_a.change(
        lambda file: process_upload(file, "a"),
        inputs=[in_file_a],
        outputs=[in_file_a, out_thumb_a, out_iscc_a, out_dna_a, out_meta_a],
        show_progress="full",
    )
    in_file_b.change(
        lambda file: process_upload(file, "b"),
        inputs=[in_file_b],
        outputs=[in_file_b, out_thumb_b, out_iscc_b, out_dna_b, out_meta_b],
        show_progress="full",
    )
    out_thumb_a.clear(
        lambda: (
            gr.File(visible=True),
            gr.Image(visible=False),
            "",
            gr.Plot(value=None),
            "",
        ),
        inputs=[],
        outputs=[in_file_a, out_thumb_a, out_iscc_a, out_dna_a, out_meta_a],
        show_progress="hidden",
    )

    out_thumb_b.clear(
        lambda: (
            gr.File(visible=True),
            gr.Image(visible=False),
            "",
            gr.Plot(value=None),
            "",
        ),
        inputs=[],
        outputs=[in_file_b, out_thumb_b, out_iscc_b, out_dna_b, out_meta_b],
        show_progress="hidden",
    )

    out_iscc_a.change(
        iscc_compare,
        inputs=[out_iscc_a, out_iscc_b],
        outputs=[out_compare, out_bitcompare],
        show_progress="hidden",
    )

    out_iscc_b.change(
        iscc_compare,
        inputs=[out_iscc_a, out_iscc_b],
        outputs=[out_compare, out_bitcompare],
        show_progress="hidden",
    )

    dumy_image_a.change(
        lambda file: rewrite_uri(file, "images1"),
        inputs=[dumy_image_a],
        outputs=[in_file_a],
        show_progress="hidden",
    )
    dumy_image_b.change(
        lambda file: rewrite_uri(file, "images2"),
        inputs=[dumy_image_b],
        outputs=[in_file_b],
        show_progress="hidden",
    )


if __name__ == "__main__":
    demo.launch(debug=True)