Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 28,527 Bytes
			
			| 24f9881 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | # Copyright (C) 2023, Computer Vision Lab, Seoul National University, https://cv.snu.ac.kr
#
# Copyright 2023 LucidDreamer Authors
#
# Computer Vision Lab, SNU, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from the Computer Vision Lab, SNU or
# its affiliates is strictly prohibited.
#
# For permission requests, please contact [email protected], [email protected], [email protected], [email protected].
import os
import glob
import json
import time
import datetime
import warnings
import shutil
from random import randint
from argparse import ArgumentParser
warnings.filterwarnings(action='ignore')
import pickle
import imageio
import numpy as np
import open3d as o3d
from PIL import Image
from tqdm import tqdm
from scipy.interpolate import griddata as interp_grid
from scipy.ndimage import minimum_filter, maximum_filter
import torch
import torch.nn.functional as F
import gradio as gr
from diffusers import (
    StableDiffusionInpaintPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline)
from arguments import GSParams, CameraParams
from gaussian_renderer import render
from scene import Scene, GaussianModel
from scene.dataset_readers import loadCameraPreset
from utils.loss import l1_loss, ssim
from utils.camera import load_json
from utils.depth import colorize
from utils.lama import LaMa
from utils.trajectory import get_camerapaths, get_pcdGenPoses
get_kernel = lambda p: torch.ones(1, 1, p * 2 + 1, p * 2 + 1).to('cuda')
t2np = lambda x: (x[0].permute(1, 2, 0).clamp_(0, 1) * 255.0).to(torch.uint8).detach().cpu().numpy()
np2t = lambda x: (torch.as_tensor(x).to(torch.float32).permute(2, 0, 1) / 255.0)[None, ...].to('cuda')
pad_mask = lambda x, padamount=1: t2np(
    F.conv2d(np2t(x[..., None]), get_kernel(padamount), padding=padamount))[..., 0].astype(bool)
class LucidDreamer:
    def __init__(self):
        self.opt = GSParams()
        self.cam = CameraParams()
        self.root = 'outputs'
        self.default_model = 'SD1.5 (default)'
        self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
        self.gaussians = GaussianModel(self.opt.sh_degree)
        bg_color = [1, 1, 1] if self.opt.white_background else [0, 0, 0]
        self.background = torch.tensor(bg_color, dtype=torch.float32, device='cuda')
        
        self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
            'runwayml/stable-diffusion-inpainting', revision='fp16', torch_dtype=torch.float16).to('cuda')
        self.d_model = torch.hub.load('./ZoeDepth', 'ZoeD_N', source='local', pretrained=True).to('cuda')
        self.controlnet = None
        self.lama = None
        self.current_model = self.default_model
    def load_model(self, model_name, use_lama=False):
        if model_name is None:
            model_name = self.default_model
        if self.current_model == model_name:
            return
        if model_name == self.default_model:
            self.controlnet = None
            self.lama = None
            self.rgb_model = StableDiffusionInpaintPipeline.from_pretrained(
                'runwayml/stable-diffusion-inpainting',
                revision='fp16',
                torch_dtype=torch.float16,
                safety_checker=None,
            ).to('cuda')
        else:
            if self.controlnet is None:
                self.controlnet = ControlNetModel.from_pretrained(
                    'lllyasviel/control_v11p_sd15_inpaint', torch_dtype=torch.float16)
            if self.lama is None and use_lama:
                self.lama = LaMa('cuda')
            self.rgb_model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
                f'stablediffusion/{model_name}',
                controlnet=self.controlnet,
                revision='fp16',
                torch_dtype=torch.float16,
                safety_checker=None,
            ).to('cuda')
            # self.rgb_model.enable_model_cpu_offload()
        torch.cuda.empty_cache()
        self.current_model = model_name
    def rgb(self, prompt, image, negative_prompt='', generator=None, num_inference_steps=50, mask_image=None):
        if self.current_model == self.default_model:
            return self.rgb_model(
                prompt=prompt,
                negative_prompt=negative_prompt,
                generator=generator,
                num_inference_steps=num_inference_steps,
                image=image,
                mask_image=mask_image,
            ).images[0]
        kwargs = {
            'negative_prompt': negative_prompt,
            'generator': generator,
            'strength': 0.8,
            'num_inference_steps': num_inference_steps,
            'height': self.cam.H,
            'width': self.cam.W,
        }
        image_np = np.array(image).astype(float) / 255.0
        mask_np = np.array(mask_image) / 255.0
        mask_sum = np.clip((image_np.prod(axis=-1) == 0) + (1 - mask_np), 0, 1)
        mask_padded = pad_mask(mask_sum, 3)
        masked = image_np * np.logical_not(mask_padded[..., None])
        if self.lama is not None:
            lama_image = Image.fromarray(lama(masked, mask_padded).astype(np.uint8))
        else:
            lama_image = image
        mask_image = Image.fromarray(mask_padded.astype(np.uint8) * 255)
        control_image = self.make_controlnet_inpaint_condition(lama_image, mask_image)
        return self.rgb_model(
            prompt=prompt,
            image=lama_image,
            control_image=control_image,
            mask_image=mask_image,
            **kwargs,
        ).images[0]
    def d(self, im):
        return self.d_model.infer_pil(im)
    def make_controlnet_inpaint_condition(self, image, image_mask):
        image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
        image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
        assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
        image[image_mask > 0.5] = -1.0  # set as masked pixel
        image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
        image = torch.from_numpy(image)
        return image
    def run(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, render_camerapath, model_name=None, example_name=None):
        # gaussians, default_gallery = self.create(
        gaussians = self.create(
            rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name, example_name)
        gallery, depth = self.render_video(render_camerapath, example_name=example_name)
        return (gaussians, gallery, depth)
        # return (gaussians, default_gallery, gallery)
    def create(self, rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps, model_name=None, example_name=None):
        self.cleaner()
        self.load_model(model_name)
        if example_name and example_name != 'DON\'T':
            outfile = os.path.join('examples', f'{example_name}.ply')
            if not os.path.exists(outfile):
                self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
                self.scene = Scene(self.traindata, self.gaussians, self.opt)        
                self.training()
            outfile = self.save_ply(outfile)
        else:
            self.traindata = self.generate_pcd(rgb_cond, txt_cond, neg_txt_cond, pcdgenpath, seed, diff_steps)
            self.scene = Scene(self.traindata, self.gaussians, self.opt)        
            self.training()
            self.timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
            outfile = self.save_ply()
        # default_gallery = self.render_video('llff', example_name=example_name)
        return outfile #, default_gallery
    
    def save_ply(self, fpath=None):
        if fpath is None:
            dpath = os.path.join(self.root, self.timestamp)
            fpath = os.path.join(dpath, 'gsplat.ply')
            os.makedirs(dpath, exist_ok=True)
        if not os.path.exists(fpath):
            self.gaussians.save_ply(fpath)
        else:
            self.gaussians.load_ply(fpath)
        return fpath
    def cleaner(self):
        # Remove the temporary file created yesterday.
        for dpath in glob.glob(os.path.join(self.root, '*')):
            timestamp = datetime.datetime.strptime(os.path.basename(dpath), '%y%m%d_%H%M%S')
            if timestamp < datetime.datetime.now() - datetime.timedelta(days=1):
                try:
                    shutil.rmtree(dpath)
                except OSError as e:
                    print("Error: %s - %s." % (e.filename, e.strerror))
    def render_video(self, preset, example_name=None):
        if example_name and example_name != 'DON\'T':
            videopath = os.path.join('examples', f'{example_name}_{preset}.mp4')
            depthpath = os.path.join('examples', f'depth_{example_name}_{preset}.mp4')
        else:
            videopath = os.path.join(self.root, self.timestamp, f'{preset}.mp4')
            depthpath = os.path.join(self.root, self.timestamp, f'depth_{preset}.mp4')
        if os.path.exists(videopath) and os.path.exists(depthpath):
            return videopath, depthpath
        
        if not hasattr(self, 'scene'):
            views = load_json(os.path.join('cameras', f'{preset}.json'), self.cam.H, self.cam.W)
        else:
            views = self.scene.getPresetCameras(preset)
        
        framelist = []
        depthlist = []
        dmin, dmax = 1e8, -1e8
        for view in views:
            results = render(view, self.gaussians, self.opt, self.background, render_only=True)
            frame, depth = results['render'], results['depth']
            framelist.append(
                np.round(frame.permute(1,2,0).detach().cpu().numpy().clip(0,1)*255.).astype(np.uint8))
            depth = -(depth * (depth > 0)).detach().cpu().numpy()
            dmin_local = depth.min().item()
            dmax_local = depth.max().item()
            if dmin_local < dmin:
                dmin = dmin_local
            if dmax_local > dmax:
                dmax = dmax_local
            depthlist.append(depth)
        # depthlist = [colorize(depth, vmin=dmin, vmax=dmax) for depth in depthlist]
        depthlist = [colorize(depth) for depth in depthlist]
        if not os.path.exists(videopath):
            imageio.mimwrite(videopath, framelist, fps=60, quality=8)
        if not os.path.exists(depthpath):
            imageio.mimwrite(depthpath, depthlist, fps=60, quality=8)
        return videopath, depthpath
    def training(self):
        if not self.scene:
            raise('Build 3D Scene First!')
        
        for iteration in tqdm(range(1, self.opt.iterations + 1)):
            self.gaussians.update_learning_rate(iteration)
            # Every 1000 its we increase the levels of SH up to a maximum degree
            if iteration % 1000 == 0:
                self.gaussians.oneupSHdegree()
            # Pick a random Camera
            viewpoint_stack = self.scene.getTrainCameras().copy()
            viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
            # import pdb; pdb.set_trace()
            # Render
            render_pkg = render(viewpoint_cam, self.gaussians, self.opt, self.background)
            image, viewspace_point_tensor, visibility_filter, radii = (
                render_pkg['render'], render_pkg['viewspace_points'], render_pkg['visibility_filter'], render_pkg['radii'])
            # Loss
            gt_image = viewpoint_cam.original_image.cuda()
            Ll1 = l1_loss(image, gt_image)
            loss = (1.0 - self.opt.lambda_dssim) * Ll1 + self.opt.lambda_dssim * (1.0 - ssim(image, gt_image))
            loss.backward()
            with torch.no_grad():
                # Densification
                if iteration < self.opt.densify_until_iter:
                    # Keep track of max radii in image-space for pruning
                    self.gaussians.max_radii2D[visibility_filter] = torch.max(
                        self.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                    self.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
                    if iteration > self.opt.densify_from_iter and iteration % self.opt.densification_interval == 0:
                        size_threshold = 20 if iteration > self.opt.opacity_reset_interval else None
                        self.gaussians.densify_and_prune(
                            self.opt.densify_grad_threshold, 0.005, self.scene.cameras_extent, size_threshold)
                    
                    if (iteration % self.opt.opacity_reset_interval == 0 
                        or (self.opt.white_background and iteration == self.opt.densify_from_iter)
                    ):
                        self.gaussians.reset_opacity()
                # Optimizer step
                if iteration < self.opt.iterations:
                    self.gaussians.optimizer.step()
                    self.gaussians.optimizer.zero_grad(set_to_none = True)
    def generate_pcd(self, rgb_cond, prompt, negative_prompt, pcdgenpath, seed, diff_steps, progress=gr.Progress()):
        ## processing inputs
        generator=torch.Generator(device='cuda').manual_seed(seed)
        w_in, h_in = rgb_cond.size
        if w_in/h_in > 1.1 or h_in/w_in > 1.1: # if height and width are similar, do center crop
            in_res = max(w_in, h_in)
            image_in, mask_in = np.zeros((in_res, in_res, 3), dtype=np.uint8), 255*np.ones((in_res, in_res, 3), dtype=np.uint8)
            image_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = np.array(rgb_cond)
            mask_in[int(in_res/2-h_in/2):int(in_res/2+h_in/2), int(in_res/2-w_in/2):int(in_res/2+w_in/2)] = 0
            image_curr = self.rgb(
                prompt=prompt, image=Image.fromarray(image_in).resize((self.cam.W, self.cam.H)),
                negative_prompt=negative_prompt, generator=generator,
                mask_image=Image.fromarray(mask_in).resize((self.cam.W, self.cam.H)))
        else: # if there is a large gap between height and width, do inpainting
            if w_in > h_in:
                image_curr = rgb_cond.crop((int(w_in/2-h_in/2), 0, int(w_in/2+h_in/2), h_in)).resize((self.cam.W, self.cam.H))
            else: # w <= h
                image_curr = rgb_cond.crop((0, int(h_in/2-w_in/2), w_in, int(h_in/2+w_in/2))).resize((self.cam.W, self.cam.H))
        render_poses = get_pcdGenPoses(pcdgenpath)
        depth_curr = self.d(image_curr)
        center_depth = np.mean(depth_curr[h_in//2-10:h_in//2+10, w_in//2-10:w_in//2+10])
        ###########################################################################################################################
        # Iterative scene generation
        H, W, K = self.cam.H, self.cam.W, self.cam.K
        x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
        edgeN = 2
        edgemask = np.ones((H-2*edgeN, W-2*edgeN))
        edgemask = np.pad(edgemask, ((edgeN,edgeN),(edgeN,edgeN)))
        ### initialize 
        R0, T0 = render_poses[0,:3,:3], render_poses[0,:3,3:4]
        pts_coord_cam = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))
        new_pts_coord_world2 = (np.linalg.inv(R0).dot(pts_coord_cam) - np.linalg.inv(R0).dot(T0)).astype(np.float32) ## new_pts_coord_world2
        new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.) ## new_pts_colors2
        pts_coord_world, pts_colors = new_pts_coord_world2.copy(), new_pts_colors2.copy()
        progress(0, desc='Dreaming...')
        # time.sleep(0.5)
        for i in progress.tqdm(range(1, len(render_poses)), desc='Dreaming'):
            R, T = render_poses[i,:3,:3], render_poses[i,:3,3:4]
            ### Transform world to pixel
            pts_coord_cam2 = R.dot(pts_coord_world) + T  ### Same with c2w*world_coord (in homogeneous space)
            pixel_coord_cam2 = np.matmul(K, pts_coord_cam2)   #.reshape(3,H,W).transpose(1,2,0).astype(np.float32)
            valid_idx = np.where(np.logical_and.reduce((pixel_coord_cam2[2]>0, 
                                                        pixel_coord_cam2[0]/pixel_coord_cam2[2]>=0, 
                                                        pixel_coord_cam2[0]/pixel_coord_cam2[2]<=W-1, 
                                                        pixel_coord_cam2[1]/pixel_coord_cam2[2]>=0, 
                                                        pixel_coord_cam2[1]/pixel_coord_cam2[2]<=H-1)))[0]
            pixel_coord_cam2 = pixel_coord_cam2[:2, valid_idx]/pixel_coord_cam2[-1:, valid_idx]
            round_coord_cam2 = np.round(pixel_coord_cam2).astype(np.int32)
            x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
            grid = np.stack((x,y), axis=-1).reshape(-1,2)
            image2 = interp_grid(pixel_coord_cam2.transpose(1,0), pts_colors[valid_idx], grid, method='linear', fill_value=0).reshape(H,W,3)
            image2 = edgemask[...,None]*image2 + (1-edgemask[...,None])*np.pad(image2[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')
            round_mask2 = np.zeros((H,W), dtype=np.float32)
            round_mask2[round_coord_cam2[1], round_coord_cam2[0]] = 1
            round_mask2 = maximum_filter(round_mask2, size=(9,9), axes=(0,1))
            image2 = round_mask2[...,None]*image2 + (1-round_mask2[...,None])*(-1)
            mask2 = minimum_filter((image2.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
            image2 = mask2[...,None]*image2 + (1-mask2[...,None])*0
            mask_hf = np.abs(mask2[:H-1, :W-1] - mask2[1:, :W-1]) + np.abs(mask2[:H-1, :W-1] - mask2[:H-1, 1:])
            mask_hf = np.pad(mask_hf, ((0,1), (0,1)), 'edge')
            mask_hf = np.where(mask_hf < 0.3, 0, 1)
            border_valid_idx = np.where(mask_hf[round_coord_cam2[1], round_coord_cam2[0]] == 1)[0]  # use valid_idx[border_valid_idx] for world1
            image_curr = self.rgb(
                prompt=prompt, image=Image.fromarray(np.round(image2*255.).astype(np.uint8)),
                negative_prompt=negative_prompt, generator=generator, num_inference_steps=diff_steps,
                mask_image=Image.fromarray(np.round((1-mask2[:,:])*255.).astype(np.uint8)))
            depth_curr = self.d(image_curr)
            ### depth optimize
            t_z2 = torch.tensor(depth_curr)
            sc = torch.ones(1).float().requires_grad_(True)
            optimizer = torch.optim.Adam(params=[sc], lr=0.001)
            for idx in range(100):
                trans3d = torch.tensor([[sc,0,0,0], [0,sc,0,0], [0,0,sc,0], [0,0,0,1]]).requires_grad_(True)
                coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1], round_coord_cam2[0]].reshape(3,-1))
                coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
                coord_world2_warp = torch.cat((coord_world2, torch.ones((1,valid_idx.shape[0]))), dim=0)
                coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
                coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]
                loss = torch.mean((torch.tensor(pts_coord_world[:,valid_idx]).float() - coord_world2_trans)**2)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()    
            with torch.no_grad():
                coord_cam2 = torch.matmul(torch.tensor(np.linalg.inv(K)), torch.stack((torch.tensor(x)*t_z2, torch.tensor(y)*t_z2, 1*t_z2), axis=0)[:,round_coord_cam2[1, border_valid_idx], round_coord_cam2[0, border_valid_idx]].reshape(3,-1))
                coord_world2 = (torch.tensor(np.linalg.inv(R)).float().matmul(coord_cam2) - torch.tensor(np.linalg.inv(R)).float().matmul(torch.tensor(T).float()))
                coord_world2_warp = torch.cat((coord_world2, torch.ones((1, border_valid_idx.shape[0]))), dim=0)
                coord_world2_trans = torch.matmul(trans3d, coord_world2_warp)
                coord_world2_trans = coord_world2_trans[:3] / coord_world2_trans[-1]
            trans3d = trans3d.detach().numpy()
            pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
            camera_origin_coord_world2 = - np.linalg.inv(R).dot(T).astype(np.float32) # 3, 1
            new_pts_coord_world2 = (np.linalg.inv(R).dot(pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
            new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
            new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
            new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
            new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]
            vector_camorigin_to_campixels = coord_world2_trans.detach().numpy() - camera_origin_coord_world2
            vector_camorigin_to_pcdpixels = pts_coord_world[:,valid_idx[border_valid_idx]] - camera_origin_coord_world2
            compensate_depth_coeff = np.sum(vector_camorigin_to_pcdpixels * vector_camorigin_to_campixels, axis=0) / np.sum(vector_camorigin_to_campixels * vector_camorigin_to_campixels, axis=0) # N_correspond
            compensate_pts_coord_world2_correspond = camera_origin_coord_world2 + vector_camorigin_to_campixels * compensate_depth_coeff.reshape(1,-1)
            compensate_coord_cam2_correspond = R.dot(compensate_pts_coord_world2_correspond) + T
            homography_coord_cam2_correspond = R.dot(coord_world2_trans.detach().numpy()) + T
            compensate_depth_correspond = compensate_coord_cam2_correspond[-1] - homography_coord_cam2_correspond[-1] # N_correspond
            compensate_depth_zero = np.zeros(4)
            compensate_depth = np.concatenate((compensate_depth_correspond, compensate_depth_zero), axis=0)  # N_correspond+4
            pixel_cam2_correspond = pixel_coord_cam2[:, border_valid_idx] # 2, N_correspond (xy)
            pixel_cam2_zero = np.array([[0,0,W-1,W-1],[0,H-1,0,H-1]])
            pixel_cam2 = np.concatenate((pixel_cam2_correspond, pixel_cam2_zero), axis=1).transpose(1,0) # N+H, 2
            # Calculate for masked pixels
            masked_pixels_xy = np.stack(np.where(1-mask2), axis=1)[:, [1,0]]
            new_depth_linear, new_depth_nearest = interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy), interp_grid(pixel_cam2, compensate_depth, masked_pixels_xy, method='nearest')
            new_depth = np.where(np.isnan(new_depth_linear), new_depth_nearest, new_depth_linear)
            pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x*depth_curr, y*depth_curr, 1*depth_curr), axis=0).reshape(3,-1))[:,np.where(1-mask2.reshape(-1))[0]]
            x_nonmask, y_nonmask = x.reshape(-1)[np.where(1-mask2.reshape(-1))[0]], y.reshape(-1)[np.where(1-mask2.reshape(-1))[0]]
            compensate_pts_coord_cam2 = np.matmul(np.linalg.inv(K), np.stack((x_nonmask*new_depth, y_nonmask*new_depth, 1*new_depth), axis=0))
            new_warp_pts_coord_cam2 = pts_coord_cam2 + compensate_pts_coord_cam2
            new_pts_coord_world2 = (np.linalg.inv(R).dot(new_warp_pts_coord_cam2) - np.linalg.inv(R).dot(T)).astype(np.float32)
            new_pts_coord_world2_warp = np.concatenate((new_pts_coord_world2, np.ones((1, new_pts_coord_world2.shape[1]))), axis=0)
            new_pts_coord_world2 = np.matmul(trans3d, new_pts_coord_world2_warp)
            new_pts_coord_world2 = new_pts_coord_world2[:3] / new_pts_coord_world2[-1]
            new_pts_colors2 = (np.array(image_curr).reshape(-1,3).astype(np.float32)/255.)[np.where(1-mask2.reshape(-1))[0]]
            pts_coord_world = np.concatenate((pts_coord_world, new_pts_coord_world2), axis=-1) ### Same with inv(c2w) * cam_coord (in homogeneous space)
            pts_colors = np.concatenate((pts_colors, new_pts_colors2), axis=0)
        #################################################################################################
        yz_reverse = np.array([[1,0,0], [0,-1,0], [0,0,-1]])
        traindata = {
            'camera_angle_x': self.cam.fov[0],
            'W': W,
            'H': H,
            'pcd_points': pts_coord_world,
            'pcd_colors': pts_colors,
            'frames': [],
        }
        # render_poses = get_pcdGenPoses(pcdgenpath)
        internel_render_poses = get_pcdGenPoses('hemisphere', {'center_depth': center_depth})
        progress(0, desc='Aligning...')
        # time.sleep(0.5)
        for i in progress.tqdm(range(len(render_poses)), desc='Aligning'):
            for j in range(len(internel_render_poses)):
                idx = i * len(internel_render_poses) + j
                print(f'{idx+1} / {len(render_poses)*len(internel_render_poses)}')
                ### Transform world to pixel
                Rw2i = render_poses[i,:3,:3]
                Tw2i = render_poses[i,:3,3:4]
                Ri2j = internel_render_poses[j,:3,:3]
                Ti2j = internel_render_poses[j,:3,3:4]
                Rw2j = np.matmul(Ri2j, Rw2i)
                Tw2j = np.matmul(Ri2j, Tw2i) + Ti2j
                # Transfrom cam2 to world + change sign of yz axis
                Rj2w = np.matmul(yz_reverse, Rw2j).T
                Tj2w = -np.matmul(Rj2w, np.matmul(yz_reverse, Tw2j))
                Pc2w = np.concatenate((Rj2w, Tj2w), axis=1)
                Pc2w = np.concatenate((Pc2w, np.array([[0,0,0,1]])), axis=0)
                pts_coord_camj = Rw2j.dot(pts_coord_world) + Tw2j
                pixel_coord_camj = np.matmul(K, pts_coord_camj)
                valid_idxj = np.where(np.logical_and.reduce((pixel_coord_camj[2]>0, 
                                                            pixel_coord_camj[0]/pixel_coord_camj[2]>=0, 
                                                            pixel_coord_camj[0]/pixel_coord_camj[2]<=W-1, 
                                                            pixel_coord_camj[1]/pixel_coord_camj[2]>=0, 
                                                            pixel_coord_camj[1]/pixel_coord_camj[2]<=H-1)))[0]
                pts_depthsj = pixel_coord_camj[-1:, valid_idxj]
                pixel_coord_camj = pixel_coord_camj[:2, valid_idxj]/pixel_coord_camj[-1:, valid_idxj]
                round_coord_camj = np.round(pixel_coord_camj).astype(np.int32)
                x, y = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # pixels
                grid = np.stack((x,y), axis=-1).reshape(-1,2)
                imagej = interp_grid(pixel_coord_camj.transpose(1,0), pts_colors[valid_idxj], grid, method='linear', fill_value=0).reshape(H,W,3)
                imagej = edgemask[...,None]*imagej + (1-edgemask[...,None])*np.pad(imagej[1:-1,1:-1], ((1,1),(1,1),(0,0)), mode='edge')
                depthj = interp_grid(pixel_coord_camj.transpose(1,0), pts_depthsj.T, grid, method='linear', fill_value=0).reshape(H,W)
                depthj = edgemask*depthj + (1-edgemask)*np.pad(depthj[1:-1,1:-1], ((1,1),(1,1)), mode='edge')
                maskj = np.zeros((H,W), dtype=np.float32)
                maskj[round_coord_camj[1], round_coord_camj[0]] = 1
                maskj = maximum_filter(maskj, size=(9,9), axes=(0,1))
                imagej = maskj[...,None]*imagej + (1-maskj[...,None])*(-1)
                maskj = minimum_filter((imagej.sum(-1)!=-3)*1, size=(11,11), axes=(0,1))
                imagej = maskj[...,None]*imagej + (1-maskj[...,None])*0
                traindata['frames'].append({
                    'image': Image.fromarray(np.round(imagej*255.).astype(np.uint8)), 
                    'transform_matrix': Pc2w.tolist(),
                })
        progress(1, desc='Baking Gaussians...')
        return traindata |