Spaces:
Sleeping
Sleeping
Commit
·
d790c0b
1
Parent(s):
66efbc3
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,11 +3,14 @@ import torch
|
|
| 3 |
import gradio as gr
|
| 4 |
import pytube as pt
|
| 5 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
MODEL_NAME = "openai/whisper-large-v2"
|
| 8 |
BATCH_SIZE = 8
|
| 9 |
FILE_LIMIT_MB = 1000
|
| 10 |
-
|
| 11 |
|
| 12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 13 |
|
|
@@ -19,11 +22,6 @@ pipe = pipeline(
|
|
| 19 |
)
|
| 20 |
|
| 21 |
|
| 22 |
-
all_special_ids = pipe.tokenizer.all_special_ids
|
| 23 |
-
transcribe_token_id = all_special_ids[-5]
|
| 24 |
-
translate_token_id = all_special_ids[-6]
|
| 25 |
-
|
| 26 |
-
|
| 27 |
def transcribe(microphone, file_upload, task):
|
| 28 |
warn_output = ""
|
| 29 |
if (microphone is not None) and (file_upload is not None):
|
|
@@ -43,9 +41,7 @@ def transcribe(microphone, file_upload, task):
|
|
| 43 |
|
| 44 |
file = microphone if microphone is not None else file_upload
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
text = pipe(file, batch_size=BATCH_SIZE)["text"]
|
| 49 |
|
| 50 |
return warn_output + text
|
| 51 |
|
|
@@ -58,25 +54,46 @@ def _return_yt_html_embed(yt_url):
|
|
| 58 |
)
|
| 59 |
return HTML_str
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
| 63 |
yt = pt.YouTube(yt_url)
|
| 64 |
html_embed_str = _return_yt_html_embed(yt_url)
|
| 65 |
-
for attempt in range(YT_ATTEMPT_LIMIT):
|
| 66 |
-
try:
|
| 67 |
-
yt = pytube.YouTube(yt_url)
|
| 68 |
-
stream = yt.streams.filter(only_audio=True)[0]
|
| 69 |
-
break
|
| 70 |
-
except KeyError:
|
| 71 |
-
if attempt + 1 == YT_ATTEMPT_LIMIT:
|
| 72 |
-
raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
text = pipe(
|
| 80 |
|
| 81 |
return html_embed_str, text
|
| 82 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pytube as pt
|
| 5 |
from transformers import pipeline
|
| 6 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 7 |
+
|
| 8 |
+
import tempfile
|
| 9 |
|
| 10 |
MODEL_NAME = "openai/whisper-large-v2"
|
| 11 |
BATCH_SIZE = 8
|
| 12 |
FILE_LIMIT_MB = 1000
|
| 13 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
| 14 |
|
| 15 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 16 |
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def transcribe(microphone, file_upload, task):
|
| 26 |
warn_output = ""
|
| 27 |
if (microphone is not None) and (file_upload is not None):
|
|
|
|
| 41 |
|
| 42 |
file = microphone if microphone is not None else file_upload
|
| 43 |
|
| 44 |
+
text = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
|
|
|
|
|
|
|
| 45 |
|
| 46 |
return warn_output + text
|
| 47 |
|
|
|
|
| 54 |
)
|
| 55 |
return HTML_str
|
| 56 |
|
| 57 |
+
def download_yt_audio(yt_url, filename):
|
| 58 |
+
info_loader = youtube_dl.YoutubeDL()
|
| 59 |
+
try:
|
| 60 |
+
info = info_loader.extract_info(yt_url, download=False)
|
| 61 |
+
except youtube_dl.utils.DownloadError as err:
|
| 62 |
+
raise gr.Error(str(err))
|
| 63 |
+
file_length = info["duration_string"]
|
| 64 |
+
file_h_m_s = file_length.split(":")
|
| 65 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
| 66 |
+
if len(file_h_m_s) == 1:
|
| 67 |
+
file_h_m_s.insert(0, 0)
|
| 68 |
+
if len(file_h_m_s) == 2:
|
| 69 |
+
file_h_m_s.insert(0, 0)
|
| 70 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
| 71 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
| 72 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
| 73 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
| 74 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
| 75 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
| 76 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 77 |
+
try:
|
| 78 |
+
ydl.download([yt_url])
|
| 79 |
+
except youtube_dl.utils.ExtractorError as err:
|
| 80 |
+
raise gr.Error(str(err))
|
| 81 |
+
|
| 82 |
|
| 83 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
| 84 |
yt = pt.YouTube(yt_url)
|
| 85 |
html_embed_str = _return_yt_html_embed(yt_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 88 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 89 |
+
download_yt_audio(yt_url, filepath)
|
| 90 |
+
with open(filepath, "rb") as f:
|
| 91 |
+
inputs = f.read()
|
| 92 |
|
| 93 |
+
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
|
| 94 |
+
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
| 95 |
|
| 96 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
|
| 97 |
|
| 98 |
return html_embed_str, text
|
| 99 |
|