File size: 1,345 Bytes
acea49b
 
 
 
 
 
cf7ee5c
 
 
 
acea49b
 
cf7ee5c
 
 
acea49b
cf7ee5c
 
acea49b
cf7ee5c
acea49b
cf7ee5c
 
acea49b
 
831f213
 
0e085d7
acea49b
cf7ee5c
acea49b
 
ef5a40c
cf7ee5c
 
 
 
acea49b
cf7ee5c
5888cc2
cf7ee5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from dotenv import load_dotenv
load_dotenv()  # take environment variables from .env.
import streamlit as st
import os
from PIL import Image
import google.generativeai as genai

# Set the page configuration (must be the first Streamlit command)
st.set_page_config(page_title="Gemini Image Demo")

os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

## Function to load OpenAI model and get response
def get_gemini_response(input, image):
    model = genai.GenerativeModel('gemini-1.5-pro')
    if input != "":
        response = model.generate_content([input, image])
    else:
        response = model.generate_content(image)
    return response.text

## Initialize our Streamlit app
st.header("Food Analysis")

input1 =os.getenv("INPUT_PROMPT")

#input = st.text_input("Input Prompt: ", key="input", placeholder="Optional")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image = ""
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image.", use_container_width=False, width=400)

submit = st.button("Check the Food Quality")

## If submit button is clicked
if submit:
    with st.spinner("Please wait while assessing the food quality..."):
        response = get_gemini_response(input1, image)
        st.write(response)