Patryk Ptasiński
Fix Stella models CPU compatibility by disabling xformers
1a9d56e
raw
history blame
11.5 kB
from typing import List, Dict, Any
import json
import torch
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from sentence_transformers import SentenceTransformer
# Device detection - use GPU if available, otherwise CPU
def get_device():
if torch.cuda.is_available():
print("🚀 GPU detected - using CUDA for acceleration")
return 'cuda'
else:
print("💻 Using CPU for inference")
return 'cpu'
DEVICE = get_device()
# Available models
MODELS = {
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
"BAAI/bge-m3": {"trust_remote_code": False},
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
"Snowflake/snowflake-arctic-embed-m-long": {"trust_remote_code": True},
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
"Qwen/Qwen3-Embedding-0.6B": {"trust_remote_code": False},
"Qwen/Qwen3-Embedding-4B": {"trust_remote_code": False},
"Qwen/Qwen3-Embedding-8B": {"trust_remote_code": False},
"dunzhang/stella_en_400M_v5": {"trust_remote_code": True},
"dunzhang/stella_en_1.5B_v5": {"trust_remote_code": True},
"infgrad/stella-base-en-v2": {"trust_remote_code": True},
"nvidia/NV-Embed-v2": {"trust_remote_code": True},
"Alibaba-NLP/gte-Qwen2-7B-instruct": {"trust_remote_code": False},
"Alibaba-NLP/gte-Qwen2-1.5B-instruct": {"trust_remote_code": False},
"intfloat/multilingual-e5-large-instruct": {"trust_remote_code": False},
"intfloat/multilingual-e5-large": {"trust_remote_code": False},
"BAAI/bge-en-icl": {"trust_remote_code": False},
}
# Model cache - keep only one model loaded at a time
current_model = None
current_model_name = "nomic-ai/nomic-embed-text-v1.5"
# Initialize default model
def load_model(model_name: str):
global current_model, current_model_name
# If requesting the same model that's already loaded, return it
if current_model is not None and current_model_name == model_name:
return current_model
# Unload the previous model if it exists
if current_model is not None:
del current_model
current_model = None
# Load the new model
trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False)
try:
print(f"Loading model '{model_name}' on {DEVICE}")
# Special handling for Stella models on CPU
if "stella" in model_name.lower() and DEVICE == "cpu":
# Disable xformers for CPU inference to avoid attention operator errors
import os
os.environ["XFORMERS_DISABLED"] = "1"
current_model = SentenceTransformer(
model_name,
trust_remote_code=trust_remote_code,
device=DEVICE
)
current_model_name = model_name
print(f"✅ Model '{model_name}' loaded successfully on {DEVICE}")
except Exception as e:
raise ValueError(f"Failed to load model '{model_name}': {str(e)}")
return current_model
# Load default model
model = load_model(current_model_name)
# Create FastAPI app
fastapi_app = FastAPI()
def embed(document: str, model_name: str = None):
if model_name:
try:
selected_model = load_model(model_name)
return selected_model.encode(document)
except Exception as e:
raise ValueError(f"Error with model '{model_name}': {str(e)}")
return model.encode(document)
# FastAPI endpoints
@fastapi_app.post("/embed")
async def embed_text(data: Dict[str, Any]):
"""Direct API endpoint for text embedding without queue"""
try:
text = data.get("text", "")
model_name = data.get("model", current_model_name)
if not text:
return JSONResponse(
status_code=400,
content={"error": "No text provided"}
)
# Allow any model but warn about trust_remote_code
if model_name not in MODELS:
trust_remote_code = False
else:
trust_remote_code = MODELS[model_name].get("trust_remote_code", False)
# Generate embedding
embedding = embed(text, model_name)
return JSONResponse(
content={
"embedding": embedding.tolist(),
"dim": len(embedding),
"model": model_name,
"trust_remote_code": trust_remote_code,
"predefined": model_name in MODELS
}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@fastapi_app.get("/models")
async def list_models():
"""List available embedding models"""
return JSONResponse(
content={
"models": list(MODELS.keys()),
"default": current_model_name
}
)
with gr.Blocks(title="Multi-Model Text Embeddings", css="""
.json-holder {
max-height: 400px !important;
overflow-y: auto !important;
}
.json-holder .wrap {
max-height: 400px !important;
overflow-y: auto !important;
}
""") as app:
gr.Markdown("# Multi-Model Text Embeddings")
gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.")
gr.Markdown(f"**Device**: {DEVICE.upper()} {'🚀' if DEVICE == 'cuda' else '💻'}")
# Model selector dropdown (allows custom input)
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value=current_model_name,
label="Select Embedding Model",
info="Choose from predefined models or enter any Hugging Face model name",
allow_custom_value=True
)
# Create an input text box
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
# Create an output component to display the embedding
output = gr.JSON(label="Text Embedding", elem_classes=["json-holder"])
# Add a submit button with API name
submit_btn = gr.Button("Generate Embedding", variant="primary")
# Handle both button click and text submission
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
# Add API usage guide
gr.Markdown("## API Usage")
gr.Markdown("""
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
**Security Note**: Only predefined models allow `trust_remote_code=True`. Any other Hugging Face model will use `trust_remote_code=False` for security.
### List Available Models
```bash
curl https://ipepe-nomic-embeddings.hf.space/models
```
### Direct API Endpoint (No Queue!)
```bash
# Default model (nomic-ai/nomic-embed-text-v1.5)
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here"}'
# With predefined model (trust_remote_code allowed)
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
# With any Hugging Face model (trust_remote_code=False for security)
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
-H "Content-Type: application/json" \
-d '{"text": "Your text to embed goes here", "model": "intfloat/e5-base-v2"}'
```
Response format:
```json
{
"embedding": [0.123, -0.456, ...],
"dim": 384,
"model": "sentence-transformers/all-MiniLM-L6-v2",
"trust_remote_code": false,
"predefined": true
}
```
### Python Example (Direct API)
```python
import requests
# List available models
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
print(models["models"])
# Generate embedding with specific model
response = requests.post(
"https://ipepe-nomic-embeddings.hf.space/embed",
json={
"text": "Your text to embed goes here",
"model": "BAAI/bge-small-en-v1.5"
}
)
result = response.json()
embedding = result["embedding"]
```
### Python Example (Gradio Client)
```python
from gradio_client import Client
client = Client("ipepe/nomic-embeddings")
result = client.predict(
"Your text to embed goes here",
"nomic-ai/nomic-embed-text-v1.5", # model selection
api_name="/predict"
)
print(result) # Returns the embedding array
```
### Available Models
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
- `Snowflake/snowflake-arctic-embed-m-long` - Medium Arctic model optimized for long context
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
""")
if __name__ == '__main__':
# Mount FastAPI app to Gradio
app = gr.mount_gradio_app(fastapi_app, app, path="/")
# Run with Uvicorn (Gradio uses this internally)
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)