Jose Benitez commited on
Commit
94f213a
·
1 Parent(s): 61debfb

update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -21,8 +21,10 @@ import torch
21
  from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
22
  from threading import Thread
23
 
24
- tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
25
- model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
 
 
26
  model = model.to('cuda:0')
27
 
28
  class StopOnTokens(StoppingCriteria):
@@ -41,6 +43,10 @@ def predict(message, history):
41
  messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
42
  for item in history_transformer_format])
43
 
 
 
 
 
44
  model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
45
  streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
46
  generate_kwargs = dict(
 
21
  from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
22
  from threading import Thread
23
 
24
+ #tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
25
+ #model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
26
+ model = AutoModelForCausalLM.from_pretrained("mattshumer/mistral-8x7b-chat", trust_remote_code=True)
27
+ tokenizer = AutoTokenizer.from_pretrained("mattshumer/mistral-8x7b-chat")
28
  model = model.to('cuda:0')
29
 
30
  class StopOnTokens(StoppingCriteria):
 
43
  messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
44
  for item in history_transformer_format])
45
 
46
+ # x = tok.encode(PROMPT, return_tensors="pt").cuda()
47
+ # x = model.generate(x, max_new_tokens=512).cpu()
48
+ # return tok.batch_decode(x)
49
+
50
  model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
51
  streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
52
  generate_kwargs = dict(