Spaces:
Runtime error
Runtime error
File size: 2,402 Bytes
209df17 df118cf 209df17 df118cf 209df17 df118cf 209df17 df118cf 209df17 df118cf 209df17 df118cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import streamlit as st
import logging
import pandas as pd
from haystack.utils import print_answers
from haystack.pipelines import Pipeline
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import EmbeddingRetriever
from haystack.nodes.other.docs2answers import Docs2Answers
from haystack.utils import launch_es, fetch_archive_from_http
# Initialize logging
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)
# Launch Elasticsearch
launch_es()
# Initialize the Haystack pipeline and document store
document_store = ElasticsearchDocumentStore(
host="localhost",
username="",
password="",
index="document",
embedding_field="question_emb",
embedding_dim=384,
excluded_meta_data=["question_emb"],
similarity="cosine",
)
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
use_gpu=True,
scale_score=False,
)
doc_to_answers = Docs2Answers()
doc_dir = "data/basic_faq_pipeline"
s3_url = "https://core-engineering.s3.eu-central-1.amazonaws.com/public/scripts/small_faq_covid.csv1.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
df = pd.read_csv(f"{doc_dir}/small_faq_covid.csv")
# Minimal cleaning
df.fillna(value="", inplace=True)
df["question"] = df["question"].apply(lambda x: x.strip())
# Get embeddings for our questions from the FAQs
questions = list(df["question"].values)
df["question_emb"] = retriever.embed_queries(queries=questions).tolist()
df = df.rename(columns={"question": "content"})
# Convert Dataframe to list of dicts and index them in our DocumentStore
docs_to_index = df.to_dict(orient="records")
document_store.write_documents(docs_to_index)
# Initialize a Pipeline (this time without a reader) and ask questions
pipeline = Pipeline()
pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipeline.add_node(component=doc_to_answers, name="Docs2Answers", inputs=["Retriever"])
# Create the Streamlit app
st.title("FAQ Search")
question = st.text_input("Ask a question:")
if question:
params = {"Retriever": {"top_k": 10}} # Modify parameters as needed
prediction = pipeline.run(query=question, params=params)
st.subheader("Answers:")
print_answers(prediction, details="medium")
|