Spaces:
Running
Running
| #!/usr/bin/python3 | |
| # -*- coding: utf-8 -*- | |
| from enum import Enum | |
| from functools import lru_cache | |
| import os | |
| import huggingface_hub | |
| import sherpa | |
| class EnumDecodingMethod(Enum): | |
| greedy_search = "greedy_search" | |
| modified_beam_search = "modified_beam_search" | |
| class EnumRecognizerType(Enum): | |
| sherpa_offline_recognizer = "sherpa.OfflineRecognizer" | |
| sherpa_online_recognizer = "sherpa.OnlineRecognizer" | |
| sherpa_onnx_offline_recognizer = "sherpa_onnx.OfflineRecognizer" | |
| sherpa_onnx_online_recognizer = "sherpa_onnx.OnlineRecognizer" | |
| model_map = { | |
| "Chinese": [ | |
| { | |
| "repo_id": "csukuangfj/wenet-chinese-model", | |
| "nn_model_file": "final.zip", | |
| "tokens_file": "units.txt", | |
| "sub_folder": ".", | |
| "recognizer_type": EnumRecognizerType.sherpa_offline_recognizer.value, | |
| } | |
| ] | |
| } | |
| def download_model(repo_id: str, | |
| nn_model_file: str, | |
| tokens_file: str, | |
| sub_folder: str, | |
| local_model_dir: str, | |
| ): | |
| nn_model_file = huggingface_hub.hf_hub_download( | |
| repo_id=repo_id, | |
| filename=nn_model_file, | |
| subfolder=sub_folder, | |
| local_dir=local_model_dir, | |
| ) | |
| tokens_file = huggingface_hub.hf_hub_download( | |
| repo_id=repo_id, | |
| filename=tokens_file, | |
| subfolder=sub_folder, | |
| local_dir=local_model_dir, | |
| ) | |
| return nn_model_file, tokens_file | |
| def load_sherpa_offline_recognizer(nn_model_file: str, | |
| tokens_file: str, | |
| sample_rate: int = 16000, | |
| num_active_paths: int = 2, | |
| decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search, | |
| num_mel_bins: int = 80, | |
| frame_dither: int = 0, | |
| ): | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = num_mel_bins | |
| feat_config.fbank_opts.frame_opts.dither = frame_dither | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model_file, | |
| tokens=tokens_file, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def load_recognizer(repo_id: str, | |
| nn_model_file: str, | |
| tokens_file: str, | |
| sub_folder: str, | |
| local_model_dir: str, | |
| recognizer_type: str, | |
| decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search, | |
| num_active_paths: int = 4, | |
| ): | |
| if not os.path.exists(local_model_dir): | |
| download_model( | |
| repo_id=repo_id, | |
| nn_model_file=nn_model_file, | |
| tokens_file=tokens_file, | |
| sub_folder=sub_folder, | |
| local_model_dir=local_model_dir, | |
| ) | |
| if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value: | |
| print("nn_model_file: {}".format(nn_model_file)) | |
| print("tokens_file: {}".format(tokens_file)) | |
| print("decoding_method: {}".format(decoding_method)) | |
| print("num_active_paths: {}".format(num_active_paths)) | |
| recognizer = load_sherpa_offline_recognizer( | |
| nn_model_file=nn_model_file, | |
| tokens_file=tokens_file, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| else: | |
| raise NotImplementedError("recognizer_type not support: {}".format(recognizer_type)) | |
| return recognizer | |
| if __name__ == "__main__": | |
| pass | |