File size: 3,590 Bytes
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168b5c0
2267fac
f0ff987
168b5c0
2267fac
 
 
 
 
 
168b5c0
 
2267fac
 
 
 
168b5c0
2267fac
168b5c0
2267fac
 
 
 
168b5c0
2267fac
168b5c0
2267fac
 
 
168b5c0
2267fac
 
 
 
 
 
3194abe
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dfa9a
2267fac
 
 
168b5c0
 
 
2267fac
 
168b5c0
3194abe
168b5c0
2267fac
 
 
 
168b5c0
 
2267fac
 
 
 
168b5c0
 
 
 
 
 
 
 
d39598e
168b5c0
2267fac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from enum import Enum
from functools import lru_cache
import os

import huggingface_hub
import sherpa


class EnumDecodingMethod(Enum):
    greedy_search = "greedy_search"
    modified_beam_search = "modified_beam_search"


class EnumRecognizerType(Enum):
    sherpa_offline_recognizer = "sherpa.OfflineRecognizer"
    sherpa_online_recognizer = "sherpa.OnlineRecognizer"
    sherpa_onnx_offline_recognizer = "sherpa_onnx.OfflineRecognizer"
    sherpa_onnx_online_recognizer = "sherpa_onnx.OnlineRecognizer"


model_map = {
    "Chinese": [
        {
            "repo_id": "csukuangfj/wenet-chinese-model",
            "nn_model_file": "final.zip",
            "tokens_file": "units.txt",
            "sub_folder": ".",
            "recognizer_type": EnumRecognizerType.sherpa_offline_recognizer.value,
        }
    ]
}


def download_model(repo_id: str,
                   nn_model_file: str,
                   tokens_file: str,
                   sub_folder: str,
                   local_model_dir: str,
                   ):

    nn_model_file = huggingface_hub.hf_hub_download(
        repo_id=repo_id,
        filename=nn_model_file,
        subfolder=sub_folder,
        local_dir=local_model_dir,
    )

    tokens_file = huggingface_hub.hf_hub_download(
        repo_id=repo_id,
        filename=tokens_file,
        subfolder=sub_folder,
        local_dir=local_model_dir,
    )
    return nn_model_file, tokens_file


def load_sherpa_offline_recognizer(nn_model_file: str,
                                   tokens_file: str,
                                   sample_rate: int = 16000,
                                   num_active_paths: int = 2,
                                   decoding_method: str = "greedy_search",
                                   num_mel_bins: int = 80,
                                   frame_dither: int = 0,
                                   ):
    feat_config = sherpa.FeatureConfig()
    feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
    feat_config.fbank_opts.mel_opts.num_bins = num_mel_bins
    feat_config.fbank_opts.frame_opts.dither = frame_dither

    config = sherpa.OfflineRecognizerConfig(
        nn_model=nn_model_file,
        tokens=tokens_file,
        use_gpu=False,
        feat_config=feat_config,
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )

    recognizer = sherpa.OfflineRecognizer(config)

    return recognizer


def load_recognizer(repo_id: str,
                    nn_model_file: str,
                    tokens_file: str,
                    sub_folder: str,
                    local_model_dir: str,
                    recognizer_type: str,
                    decoding_method: str = "greedy_search",
                    num_active_paths: int = 4,
                    ):
    if not os.path.exists(local_model_dir):
        download_model(
            repo_id=repo_id,
            nn_model_file=nn_model_file,
            tokens_file=tokens_file,
            sub_folder=sub_folder,
            local_model_dir=local_model_dir,
        )

    if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
        recognizer = load_sherpa_offline_recognizer(
            nn_model_file=nn_model_file,
            tokens_file=tokens_file,
            decoding_method=decoding_method,
            num_active_paths=num_active_paths,
        )
    else:
        raise NotImplementedError("recognizer_type not support: {}".format(recognizer_type))
    return recognizer


if __name__ == "__main__":
    pass