Spaces:
Runtime error
Runtime error
File size: 4,551 Bytes
0acc836 d46e1fe 0acc836 d46e1fe 0acc836 2355a89 0acc836 de87909 0acc836 abe2443 0acc836 d46e1fe 0acc836 d46e1fe abe2443 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import random
import gradio as gr
import PIL
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
cartoonization_id = "instruction-tuning-sd/cartoonizer"
image_proc_id = "instruction-tuning-sd/low-level-img-proc"
title = "Instruction-tuned Stable Diffusion"
description = "This Space demonstrates the instruction-tuning on Stable Diffusion. To know more, please check out the [corresponding blog post](https://hf.co/blog/instruction-tuning-sd). Some experimentation tips are available from [the original InstructPix2Pix Space](https://huggingface.co/spaces/timbrooks/instruct-pix2pix)."
def load_pipeline(id: str):
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
id, torch_dtype=torch.float16
).to("cuda")
pipeline.enable_xformers_memory_efficient_attention()
pipeline.set_progress_bar_config(disable=True)
return pipeline
def infer_cartoonization(
prompt: str,
negative_prompt: str,
image: PIL.Image.Image,
steps: int,
img_cfg: float,
text_cfg: float,
seed: int,
):
pipeline = load_pipeline(cartoonization_id)
images = pipeline(
prompt,
image,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
image_guidance_scale=img_cfg,
guidance_scale=text_cfg,
generator=torch.manual_seed(int(seed)),
)
return images
def infer_img_proc(
prompt: str,
negative_prompt: str,
image: PIL.Image.Image,
steps: int,
img_cfg: float,
text_cfg: float,
seed: int,
):
pipeline = load_pipeline(image_proc_id)
images = pipeline(
prompt,
image,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
image_guidance_scale=img_cfg,
guidance_scale=text_cfg,
generator=torch.manual_seed(int(seed)),
)
return images
examples = [
["cartoonize this image", "low quality", "examples/mountain.png", 20, 1.5, 7.5, 0],
["derain this image", "low quality", "examples/duck.png", 20, 1.5, 7.5, 0],
]
with gr.Blocks(theme="gradio/soft") as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
with gr.Tab("Cartoonization"):
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt")
input_image = gr.Image(label="Input Image")
steps = gr.Slider(minimum=5, maximum=100, step=1)
img_cfg = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
text_cfg = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
seed = gr.Slider(minimum=0, maximum=100000, step=1)
car_output_gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
submit_btn = gr.Button(value="Submit")
all_car_inputs = [prompt, neg_prompt, input_image, steps, img_cfg, text_cfg, seed]
submit_btn.click(
fn=infer_cartoonization,
inputs=all_car_inputs,
outputs=[car_output_gallery],
)
with gr.Tab("Low-level image processing"):
rompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt")
input_image = gr.Image(label="Input Image")
steps = gr.Slider(minimum=5, maximum=100, step=1)
img_cfg = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
text_cfg = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
seed = gr.Slider(minimum=0, maximum=100000, step=1)
img_proc_output_gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
submit_btn = gr.Button(value="Submit")
all_img_proc_inputs = [prompt, neg_prompt, input_image, img_cfg, text_cfg, seed]
submit_btn.click(
fn=infer_img_proc,
inputs=all_img_proc_inputs,
outputs=[img_proc_output_gallery],
)
gr.Markdown("### Cartoonization example")
gr.Examples(
[examples[0]],
inputs=all_car_inputs,
outputs=car_output_gallery,
fn=infer_cartoonization,
cache_examples=True,
)
gr.Markdown("### Low-level image processing example")
gr.Examples(
[examples[0]],
inputs=all_img_proc_inputs,
outputs=img_proc_output_gallery,
fn=infer_img_proc,
cache_examples=True,
)
demo.launch()
|