Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import spaces | |
import sys | |
import shutil | |
import tempfile | |
import uuid | |
import re | |
import time | |
import copy | |
from collections import Counter | |
from tqdm import tqdm | |
from einops import rearrange | |
import numpy as np | |
import json | |
import torch | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import soundfile as sf | |
# --- Install flash-attn (if needed) --- | |
print("Installing flash-attn...") | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True | |
) | |
# --- Download and set up stage1 files --- | |
from huggingface_hub import snapshot_download | |
folder_path = "./xcodec_mini_infer" | |
if not os.path.exists(folder_path): | |
os.mkdir(folder_path) | |
print(f"Folder created at: {folder_path}") | |
else: | |
print(f"Folder already exists at: {folder_path}") | |
snapshot_download( | |
repo_id="m-a-p/xcodec_mini_infer", | |
local_dir=folder_path | |
) | |
# Change working directory to current folder | |
inference_dir = "." | |
try: | |
os.chdir(inference_dir) | |
print(f"Changed working directory to: {os.getcwd()}") | |
except FileNotFoundError: | |
print(f"Directory not found: {inference_dir}") | |
exit(1) | |
# --- Append required module paths --- | |
base_path = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(os.path.join(base_path, "xcodec_mini_infer")) | |
sys.path.append(os.path.join(base_path, "xcodec_mini_infer", "descriptaudiocodec")) | |
# --- Additional imports (vocoder & post processing) --- | |
from omegaconf import OmegaConf | |
from codecmanipulator import CodecManipulator | |
from mmtokenizer import _MMSentencePieceTokenizer | |
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
from models.soundstream_hubert_new import SoundStream | |
# Import vocoder functions (ensure these modules exist) | |
from vocoder import build_codec_model, process_audio | |
from post_process_audio import replace_low_freq_with_energy_matched | |
# ----------------------- Global Configuration ----------------------- | |
# Stage1 and Stage2 model identifiers (change if needed) | |
STAGE1_MODEL = "m-a-p/YuE-s1-7B-anneal-en-cot" | |
STAGE2_MODEL = "m-a-p/YuE-s2-1B-general" | |
# Vocoder model files (paths in the xcodec snapshot) | |
BASIC_MODEL_CONFIG = os.path.join(folder_path, "final_ckpt/config.yaml") | |
RESUME_PATH = os.path.join(folder_path, "final_ckpt/ckpt_00360000.pth") | |
VOCAL_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_131000.pth") | |
INST_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_151000.pth") | |
VOCODER_CONFIG_PATH = os.path.join(folder_path, "decoders/config.yaml") | |
# Misc settings | |
MAX_NEW_TOKENS = 15 # Duration slider (in seconds, scaled internally) | |
RUN_N_SEGMENTS = 2 # Number of segments to generate | |
STAGE2_BATCH_SIZE = 4 # Batch size for stage2 inference | |
# You may change these defaults via Gradio input (see below) | |
# ----------------------- Device Setup ----------------------- | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# ----------------------- Load Stage1 Models and Tokenizer ----------------------- | |
print("Loading Stage 1 model and tokenizer...") | |
model = AutoModelForCausalLM.from_pretrained( | |
STAGE1_MODEL, | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2", | |
).to(device) | |
model.eval() | |
model_stage2 = AutoModelForCausalLM.from_pretrained( | |
STAGE2_MODEL, | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2", | |
).to(device) | |
model_stage2.eval() | |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
# Two separate codec manipulators: one for Stage1 and one for Stage2 (with a higher number of quantizers) | |
codectool = CodecManipulator("xcodec", 0, 1) | |
codectool_stage2 = CodecManipulator("xcodec", 0, 8) | |
# Load codec (xcodec) model for Stage1 & Stage2 decoding | |
model_config = OmegaConf.load(BASIC_MODEL_CONFIG) | |
codec_class = eval(model_config.generator.name) | |
codec_model = codec_class(**model_config.generator.config).to(device) | |
parameter_dict = torch.load(RESUME_PATH, map_location="cpu") | |
codec_model.load_state_dict(parameter_dict["codec_model"]) | |
codec_model.eval() | |
# Precompile regex for splitting lyrics | |
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL) | |
# ----------------------- Utility Functions ----------------------- | |
def load_audio_mono(filepath, sampling_rate=16000): | |
audio, sr = torchaudio.load(filepath) | |
audio = audio.mean(dim=0, keepdim=True) # convert to mono | |
if sr != sampling_rate: | |
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
audio = resampler(audio) | |
return audio | |
def split_lyrics(lyrics: str): | |
segments = LYRICS_PATTERN.findall(lyrics) | |
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments] | |
class BlockTokenRangeProcessor(LogitsProcessor): | |
def __init__(self, start_id, end_id): | |
self.blocked_token_ids = list(range(start_id, end_id)) | |
def __call__(self, input_ids, scores): | |
scores[:, self.blocked_token_ids] = -float("inf") | |
return scores | |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
limit = 0.99 | |
max_val = wav.abs().max().item() | |
if rescale and max_val > 0: | |
wav = wav * (limit / max_val) | |
else: | |
wav = wav.clamp(-limit, limit) | |
torchaudio.save(path, wav, sample_rate=sample_rate, encoding="PCM_S", bits_per_sample=16) | |
# ----------------------- Stage2 Functions ----------------------- | |
def stage2_generate(model_stage2, prompt, batch_size=16): | |
""" | |
Given a prompt (a numpy array of raw codec ids), upsample using the Stage2 model. | |
""" | |
# Unflatten prompt: assume prompt shape (1, T) and then reformat. | |
print(f"stage2_generate: received prompt with shape: {prompt.shape}") | |
codec_ids = codectool.unflatten(prompt, n_quantizer=1) | |
codec_ids = codectool.offset_tok_ids( | |
codec_ids, | |
global_offset=codectool.global_offset, | |
codebook_size=codectool.codebook_size, | |
num_codebooks=codectool.num_codebooks, | |
).astype(np.int32) | |
# Build new prompt tokens for Stage2: | |
if batch_size > 1: | |
codec_list = [] | |
for i in range(batch_size): | |
idx_begin = i * 300 | |
idx_end = (i + 1) * 300 | |
codec_list.append(codec_ids[:, idx_begin:idx_end]) | |
codec_ids_concat = np.concatenate(codec_list, axis=0) | |
prompt_ids = np.concatenate( | |
[ | |
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)), | |
codec_ids_concat, | |
np.tile([mmtokenizer.stage_2], (batch_size, 1)), | |
], | |
axis=1, | |
) | |
else: | |
prompt_ids = np.concatenate( | |
[ | |
np.array([mmtokenizer.soa, mmtokenizer.stage_1]), | |
codec_ids.flatten(), | |
np.array([mmtokenizer.stage_2]), | |
] | |
).astype(np.int32) | |
prompt_ids = prompt_ids[np.newaxis, ...] | |
codec_ids_tensor = torch.as_tensor(codec_ids).to(device) | |
prompt_ids_tensor = torch.as_tensor(prompt_ids).to(device) | |
len_prompt = prompt_ids_tensor.shape[-1] | |
block_list = LogitsProcessorList([ | |
BlockTokenRangeProcessor(0, 46358), | |
BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size) | |
]) | |
# Teacher forcing generate loop: generate tokens in fixed 7-token steps per frame. | |
for frames_idx in range(codec_ids_tensor.shape[1]): | |
cb0 = codec_ids_tensor[:, frames_idx:frames_idx+1] | |
prompt_ids_tensor = torch.cat([prompt_ids_tensor, cb0], dim=1) | |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): | |
stage2_output = model_stage2.generate( | |
input_ids=prompt_ids_tensor, | |
min_new_tokens=7, | |
max_new_tokens=7, | |
eos_token_id=mmtokenizer.eoa, | |
pad_token_id=mmtokenizer.eoa, | |
logits_processor=block_list, | |
use_cache=True | |
) | |
# Ensure exactly 7 new tokens were added. | |
assert stage2_output.shape[1] - prompt_ids_tensor.shape[1] == 7, ( | |
f"output new tokens={stage2_output.shape[1]-prompt_ids_tensor.shape[1]}" | |
) | |
prompt_ids_tensor = stage2_output | |
# Return new tokens (excluding prompt) | |
if batch_size > 1: | |
output = prompt_ids_tensor.cpu().numpy()[:, len_prompt:] | |
# If desired, reshape/split per batch element | |
output_list = [output[i] for i in range(batch_size)] | |
output = np.concatenate(output_list, axis=0) | |
else: | |
output = prompt_ids_tensor[0].cpu().numpy()[len_prompt:] | |
return output | |
def stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4): | |
stage2_result = [] | |
for path in tqdm(stage1_output_set, desc="Stage2 Inference"): | |
output_filename = os.path.join(stage2_output_dir, os.path.basename(path)) | |
if os.path.exists(output_filename): | |
print(f"{output_filename} already processed.") | |
stage2_result.append(output_filename) | |
continue | |
prompt = np.load(path).astype(np.int32) | |
# Ensure prompt is 2D. | |
if prompt.ndim == 1: | |
prompt = prompt[np.newaxis, :] | |
print(f"Loaded prompt from {path} with shape: {prompt.shape}") | |
# Compute total duration in seconds (assuming 50 tokens per second) | |
total_duration_sec = prompt.shape[-1] // 50 | |
if total_duration_sec < 6: | |
# Not enough tokens for a full 6-sec segment; use the entire prompt. | |
output_duration = total_duration_sec | |
print(f"Prompt too short for 6-sec segmentation. Using full duration: {output_duration} seconds.") | |
else: | |
output_duration = (total_duration_sec // 6) * 6 | |
# If after the above, output_duration is still zero, raise an error. | |
if output_duration == 0: | |
raise ValueError(f"Output duration computed as 0 for {path}. Prompt length: {prompt.shape[-1]} tokens") | |
num_batch = output_duration // 6 | |
# Process prompt in batches | |
if num_batch <= batch_size: | |
output = stage2_generate(model_stage2, prompt[:, :output_duration*50], batch_size=num_batch) | |
else: | |
segments = [] | |
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0) | |
for seg in range(num_segments): | |
start_idx = seg * batch_size * 300 | |
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50) | |
current_batch = batch_size if (seg != num_segments - 1 or num_batch % batch_size == 0) else num_batch % batch_size | |
segment_prompt = prompt[:, start_idx:end_idx] | |
if segment_prompt.shape[-1] == 0: | |
print(f"Warning: empty segment detected for seg {seg}, start {start_idx}, end {end_idx}. Skipping this segment.") | |
continue | |
segment = stage2_generate(model_stage2, segment_prompt, batch_size=current_batch) | |
segments.append(segment) | |
if len(segments) == 0: | |
raise ValueError(f"No valid segments produced for {path}.") | |
output = np.concatenate(segments, axis=0) | |
# Process any remaining tokens if prompt length not fully used. | |
if output_duration * 50 != prompt.shape[-1]: | |
ending = stage2_generate(model_stage2, prompt[:, output_duration * 50:], batch_size=1) | |
output = np.concatenate([output, ending], axis=0) | |
# Convert Stage2 output tokens back to numpy using Stage2βs codec manipulator. | |
output = codectool_stage2.ids2npy(output) | |
# Fix any invalid codes (if needed) | |
fixed_output = copy.deepcopy(output) | |
for i, line in enumerate(output): | |
for j, element in enumerate(line): | |
if element < 0 or element > 1023: | |
counter = Counter(line) | |
most_common = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0] | |
fixed_output[i, j] = most_common | |
np.save(output_filename, fixed_output) | |
stage2_result.append(output_filename) | |
return stage2_result | |
# ----------------------- Main Generation Function (Stage1 + Stage2) ----------------------- | |
def generate_music( | |
genre_txt="", | |
lyrics_txt="", | |
max_new_tokens=2, | |
run_n_segments=1, | |
use_audio_prompt=False, | |
audio_prompt_path="", | |
prompt_start_time=0.0, | |
prompt_end_time=30.0, | |
rescale=False, | |
): | |
# Scale max_new_tokens (e.g. seconds * 50 tokens per second) | |
max_new_tokens_scaled = max_new_tokens * 50 | |
# Use a temporary directory to store intermediate stage outputs. | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
stage1_output_dir = os.path.join(tmp_dir, "stage1") | |
stage2_output_dir = os.path.join(tmp_dir, "stage2") | |
os.makedirs(stage1_output_dir, exist_ok=True) | |
os.makedirs(stage2_output_dir, exist_ok=True) | |
# ---------------- Stage 1: Text-to-Music Generation ---------------- | |
genres = genre_txt.strip() | |
lyrics_segments = split_lyrics(lyrics_txt + "\n") | |
full_lyrics = "\n".join(lyrics_segments) | |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
prompt_texts += lyrics_segments | |
random_id = uuid.uuid4() | |
raw_output = None | |
# Decoding config | |
top_p = 0.93 | |
temperature = 1.0 | |
repetition_penalty = 1.2 | |
# Pre-tokenize special tokens | |
start_of_segment = mmtokenizer.tokenize("[start_of_segment]") | |
end_of_segment = mmtokenizer.tokenize("[end_of_segment]") | |
soa_token = mmtokenizer.soa | |
eoa_token = mmtokenizer.eoa | |
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0]) | |
run_n = min(run_n_segments + 1, len(prompt_texts)) | |
for i, p in enumerate(tqdm(prompt_texts[:run_n], desc="Stage1 Generation")): | |
section_text = p.replace("[start_of_segment]", "").replace("[end_of_segment]", "") | |
guidance_scale = 1.5 if i <= 1 else 1.2 | |
if i == 0: | |
continue | |
if i == 1: | |
if use_audio_prompt: | |
audio_prompt = load_audio_mono(audio_prompt_path) | |
audio_prompt = audio_prompt.unsqueeze(0) | |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): | |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16) | |
code_ids = codectool.npy2ids(raw_codes[0]) | |
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] | |
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token] | |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
head_id = global_prompt_ids + sentence_ids | |
else: | |
head_id = global_prompt_ids | |
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids | |
else: | |
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids | |
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0) | |
if raw_output is not None: | |
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1) | |
else: | |
input_ids = prompt_ids_tensor | |
max_context = 16384 - max_new_tokens_scaled - 1 | |
if input_ids.shape[-1] > max_context: | |
input_ids = input_ids[:, -max_context:] | |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): | |
output_seq = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens_scaled, | |
min_new_tokens=100, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=eoa_token, | |
pad_token_id=eoa_token, | |
logits_processor=LogitsProcessorList([ | |
BlockTokenRangeProcessor(0, 32002), | |
BlockTokenRangeProcessor(32016, 32016) | |
]), | |
guidance_scale=guidance_scale, | |
use_cache=True, | |
) | |
if output_seq[0, -1].item() != eoa_token: | |
tensor_eoa = torch.as_tensor([[eoa_token]], device=device) | |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
if raw_output is not None: | |
new_tokens = output_seq[:, input_ids.shape[-1]:] | |
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1) | |
else: | |
raw_output = output_seq | |
# Save Stage1 outputs (vocal & instrumental) as npy files. | |
ids = raw_output[0].cpu().numpy() | |
soa_idx = np.where(ids == soa_token)[0] | |
eoa_idx = np.where(ids == eoa_token)[0] | |
if len(soa_idx) != len(eoa_idx): | |
raise ValueError(f"invalid pairs of soa and eoa: {len(soa_idx)} vs {len(eoa_idx)}") | |
vocals_list = [] | |
instrumentals_list = [] | |
range_begin = 1 if use_audio_prompt else 0 | |
for i in range(range_begin, len(soa_idx)): | |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] | |
if codec_ids[0] == 32016: | |
codec_ids = codec_ids[1:] | |
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] | |
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2) | |
vocals_list.append(codectool.ids2npy(reshaped[0])) | |
instrumentals_list.append(codectool.ids2npy(reshaped[1])) | |
vocals = np.concatenate(vocals_list, axis=1) | |
instrumentals = np.concatenate(instrumentals_list, axis=1) | |
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy") | |
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy") | |
np.save(vocal_save_path, vocals) | |
np.save(inst_save_path, instrumentals) | |
stage1_output_set = [vocal_save_path, inst_save_path] | |
# (Optional) Offload Stage1 model from GPU to free memory. | |
model.cpu() | |
torch.cuda.empty_cache() | |
# ---------------- Stage 2: Refinement/Upsampling ---------------- | |
print("Stage 2 inference...") | |
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=STAGE2_BATCH_SIZE) | |
print("Stage 2 inference completed.") | |
# ---------------- Reconstruct Audio from Stage2 Tokens ---------------- | |
recons_output_dir = os.path.join(tmp_dir, "recons") | |
recons_mix_dir = os.path.join(recons_output_dir, "mix") | |
os.makedirs(recons_mix_dir, exist_ok=True) | |
tracks = [] | |
for npy in stage2_result: | |
codec_result = np.load(npy) | |
with torch.inference_mode(): | |
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device) | |
decoded_waveform = codec_model.decode(input_tensor) | |
decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") | |
tracks.append(save_path) | |
save_audio(decoded_waveform, save_path, 16000, rescale) | |
# Mix vocal and instrumental tracks: | |
mix_audio = None | |
vocal_audio = None | |
instrumental_audio = None | |
for inst_path in tracks: | |
try: | |
if (inst_path.endswith(".wav") or inst_path.endswith(".mp3")) and "instrumental" in inst_path: | |
vocal_path = inst_path.replace("instrumental", "vocal") | |
if not os.path.exists(vocal_path): | |
continue | |
vocal_data, sr = sf.read(vocal_path) | |
instrumental_data, _ = sf.read(inst_path) | |
mix_data = (vocal_data + instrumental_data) / 1.0 | |
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace("instrumental", "mixed")) | |
sf.write(recons_mix, mix_data, sr) | |
mix_audio = (sr, (mix_data * 32767).astype(np.int16)) | |
vocal_audio = (sr, (vocal_data * 32767).astype(np.int16)) | |
instrumental_audio = (sr, (instrumental_data * 32767).astype(np.int16)) | |
except Exception as e: | |
print("Mixing error:", e) | |
return None, None, None | |
# ---------------- Vocoder Upsampling and Post Processing ---------------- | |
print("Vocoder upsampling...") | |
vocal_decoder, inst_decoder = build_codec_model(VOCODER_CONFIG_PATH, VOCAL_DECODER_PATH, INST_DECODER_PATH) | |
vocoder_output_dir = os.path.join(tmp_dir, "vocoder") | |
vocoder_stems_dir = os.path.join(vocoder_output_dir, "stems") | |
vocoder_mix_dir = os.path.join(vocoder_output_dir, "mix") | |
os.makedirs(vocoder_stems_dir, exist_ok=True) | |
os.makedirs(vocoder_mix_dir, exist_ok=True) | |
# Process each track with the vocoder (here we process vocal and instrumental separately) | |
if vocal_audio is not None and instrumental_audio is not None: | |
vocal_output = process_audio( | |
stage2_result[0], | |
os.path.join(vocoder_stems_dir, "vocal.mp3"), | |
rescale, | |
None, | |
vocal_decoder, | |
codec_model, | |
) | |
instrumental_output = process_audio( | |
stage2_result[1], | |
os.path.join(vocoder_stems_dir, "instrumental.mp3"), | |
rescale, | |
None, | |
inst_decoder, | |
codec_model, | |
) | |
try: | |
mix_output = instrumental_output + vocal_output | |
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) | |
save_audio(mix_output, vocoder_mix, 44100, rescale) | |
print(f"Created vocoder mix: {vocoder_mix}") | |
except RuntimeError as e: | |
print(e) | |
print("Mixing vocoder outputs failed!") | |
else: | |
print("Missing vocal/instrumental outputs for vocoder stage.") | |
# Post-process: Replace low frequency of Stage1 reconstruction with energy-matched vocoder mix. | |
final_mix_path = os.path.join(tmp_dir, "final_mix.mp3") | |
try: | |
replace_low_freq_with_energy_matched( | |
a_file=recons_mix, # Stage1 mix at 16kHz | |
b_file=vocoder_mix, # Vocoder mix at 48kHz | |
c_file=final_mix_path, | |
cutoff_freq=5500.0 | |
) | |
except Exception as e: | |
print("Post processing error:", e) | |
final_mix_path = recons_mix # Fall back to Stage1 mix | |
# Return final outputs as tuples: (sample_rate, np.int16 audio) | |
final_audio, vocal_audio, instrumental_audio = None, None, None | |
try: | |
final_audio_data, sr = sf.read(final_mix_path) | |
final_audio = (sr, (final_audio_data * 32767).astype(np.int16)) | |
except Exception as e: | |
print("Final mix read error:", e) | |
return final_audio, vocal_audio, instrumental_audio | |
# ----------------------- Gradio Interface ----------------------- | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# YuE: Full-Song Generation (Stage1 + Stage2)") | |
gr.HTML( | |
""" | |
<div style="display:flex; column-gap:4px;"> | |
<a href="https://github.com/multimodal-art-projection/YuE"><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a> | |
<a href="https://map-yue.github.io"><img src='https://img.shields.io/badge/Project-Page-green'></a> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
genre_txt = gr.Textbox(label="Genre", placeholder="e.g. Bass Metalcore Thrash Metal Furious bright vocal male") | |
lyrics_txt = gr.Textbox(label="Lyrics", placeholder="Paste lyrics with segments such as [verse], [chorus], etc.") | |
with gr.Column(): | |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
max_new_tokens = gr.Slider(label="Duration of song (sec)", minimum=1, maximum=30, step=1, value=15, interactive=True) | |
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt", value=False) | |
audio_prompt_path = gr.Textbox(label="Audio Prompt Filepath (if used)", placeholder="Path to audio file") | |
submit_btn = gr.Button("Submit") | |
music_out = gr.Audio(label="Mixed Audio Result") | |
with gr.Accordion(label="Vocal and Instrumental Results", open=False): | |
vocal_out = gr.Audio(label="Vocal Audio") | |
instrumental_out = gr.Audio(label="Instrumental Audio") | |
gr.Examples( | |
examples=[ | |
[ | |
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", | |
"""[verse] | |
Step back cause I'll ignite | |
Won't quit without a fight | |
No escape, gear up, it's a fierce fight | |
Brace up, raise your hands up and light | |
Fear the might. Step back cause I'll ignite | |
Won't back down without a fight | |
It keeps going and going, the heat is on. | |
[chorus] | |
Hot flame. Hot flame. | |
Still here, still holding aim | |
I don't care if I'm bright or dim: nah. | |
I've made it clear, I'll make it again | |
All I want is my crew and my gain. | |
I'm feeling wild, got a bit of rebel style. | |
Locked inside my mind, hot flame. | |
""" | |
], | |
[ | |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
"""[verse] | |
Woke up in the morning, sun is shining bright | |
Chasing all my dreams, gotta get my mind right | |
City lights are fading, but my vision's clear | |
Got my team beside me, no room for fear | |
Walking through the streets, beats inside my head | |
Every step I take, closer to the bread | |
People passing by, they don't understand | |
Building up my future with my own two hands | |
[chorus] | |
This is my life, and I'mma keep it real | |
Never gonna quit, no, I'm never gonna stop | |
Through the highs and lows, I'mma keep it real | |
Living out my dreams with this mic and a deal | |
""" | |
] | |
], | |
inputs=[genre_txt, lyrics_txt], | |
outputs=[music_out, vocal_out, instrumental_out], | |
cache_examples=True, | |
cache_mode="eager", | |
fn=generate_music | |
) | |
submit_btn.click( | |
fn=generate_music, | |
inputs=[genre_txt, lyrics_txt, max_new_tokens, num_segments, use_audio_prompt, audio_prompt_path], | |
outputs=[music_out, vocal_out, instrumental_out] | |
) | |
gr.Markdown("## Contributions Welcome\nFeel free to contribute improvements or fixes.") | |
demo.queue().launch(show_error=True) | |