Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) ByteDance, Inc. and its affiliates. | |
# Copyright (c) Chutong Meng | |
# | |
# This source code is licensed under the CC BY-NC license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Based on AudioDec (https://github.com/facebookresearch/AudioDec) | |
import torch.nn as nn | |
class Conv1d1x1(nn.Conv1d): | |
"""1x1 Conv1d.""" | |
def __init__(self, in_channels, out_channels, bias=True): | |
super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, bias=bias) | |
class Conv1d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
padding: int = -1, | |
dilation: int = 1, | |
groups: int = 1, | |
bias: bool = True | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
if padding < 0: | |
padding = (kernel_size - 1) // 2 * dilation | |
self.dilation = dilation | |
self.conv = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Float tensor variable with the shape (B, C, T). | |
Returns: | |
Tensor: Float tensor variable with the shape (B, C, T). | |
""" | |
x = self.conv(x) | |
return x | |
class ConvTranspose1d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int, | |
padding=-1, | |
output_padding=-1, | |
groups=1, | |
bias=True, | |
): | |
super().__init__() | |
if padding < 0: | |
padding = (stride + 1) // 2 | |
if output_padding < 0: | |
output_padding = 1 if stride % 2 else 0 | |
self.deconv = nn.ConvTranspose1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
output_padding=output_padding, | |
groups=groups, | |
bias=bias, | |
) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Float tensor variable with the shape (B, C, T). | |
Returns: | |
Tensor: Float tensor variable with the shape (B, C', T'). | |
""" | |
x = self.deconv(x) | |
return x | |