Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) ByteDance, Inc. and its affiliates. | |
# Copyright (c) Chutong Meng | |
# | |
# This source code is licensed under the CC BY-NC license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Based on AudioDec (https://github.com/facebookresearch/AudioDec) | |
import torch.nn as nn | |
from repcodec.modules.decoder import Decoder | |
from repcodec.modules.encoder import Encoder | |
from repcodec.modules.projector import Projector | |
from repcodec.modules.quantizer import Quantizer | |
class RepCodec(nn.Module): | |
def __init__( | |
self, | |
input_channels=768, | |
output_channels=768, | |
encode_channels=768, | |
decode_channels=768, | |
code_dim=768, | |
codebook_num=1, | |
codebook_size=1024, | |
bias=True, | |
enc_ratios=(1, 1), | |
dec_ratios=(1, 1), | |
enc_strides=(1, 1), | |
dec_strides=(1, 1), | |
enc_kernel_size=3, | |
dec_kernel_size=3, | |
enc_block_dilations=(1, 1), | |
enc_block_kernel_size=3, | |
dec_block_dilations=(1, 1), | |
dec_block_kernel_size=3 | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.encoder = Encoder( | |
input_channels=input_channels, | |
encode_channels=encode_channels, | |
channel_ratios=enc_ratios, | |
strides=enc_strides, | |
kernel_size=enc_kernel_size, | |
bias=bias, | |
block_dilations=enc_block_dilations, | |
unit_kernel_size=enc_block_kernel_size | |
) | |
self.decoder = Decoder( | |
code_dim=code_dim, | |
output_channels=output_channels, | |
decode_channels=decode_channels, | |
channel_ratios=dec_ratios, | |
strides=dec_strides, | |
kernel_size=dec_kernel_size, | |
bias=bias, | |
block_dilations=dec_block_dilations, | |
unit_kernel_size=dec_block_kernel_size | |
) | |
self.projector = Projector( | |
input_channels=self.encoder.out_channels, | |
code_dim=code_dim, | |
kernel_size=3, | |
stride=1, | |
bias=False | |
) | |
self.quantizer = Quantizer( | |
code_dim=code_dim, | |
codebook_num=codebook_num, | |
codebook_size=codebook_size | |
) | |
def forward(self, x): | |
x = self.encoder(x) | |
z = self.projector(x) | |
zq, vqloss, perplexity = self.quantizer(z) | |
y = self.decoder(zq) | |
return y, zq, z, vqloss, perplexity | |