Spaces:
Runtime error
Runtime error
| from utils.wan_wrapper import WanDiffusionWrapper | |
| from utils.scheduler import SchedulerInterface | |
| from typing import List, Optional | |
| import torch | |
| import torch.distributed as dist | |
| class SelfForcingTrainingPipeline: | |
| def __init__(self, | |
| denoising_step_list: List[int], | |
| scheduler: SchedulerInterface, | |
| generator: WanDiffusionWrapper, | |
| num_frame_per_block=3, | |
| independent_first_frame: bool = False, | |
| same_step_across_blocks: bool = False, | |
| last_step_only: bool = False, | |
| num_max_frames: int = 21, | |
| context_noise: int = 0, | |
| **kwargs): | |
| super().__init__() | |
| self.scheduler = scheduler | |
| self.generator = generator | |
| self.denoising_step_list = denoising_step_list | |
| if self.denoising_step_list[-1] == 0: | |
| self.denoising_step_list = self.denoising_step_list[:-1] # remove the zero timestep for inference | |
| # Wan specific hyperparameters | |
| self.num_transformer_blocks = 30 | |
| self.frame_seq_length = 1560 | |
| self.num_frame_per_block = num_frame_per_block | |
| self.context_noise = context_noise | |
| self.i2v = False | |
| self.kv_cache1 = None | |
| self.kv_cache2 = None | |
| self.independent_first_frame = independent_first_frame | |
| self.same_step_across_blocks = same_step_across_blocks | |
| self.last_step_only = last_step_only | |
| self.kv_cache_size = num_max_frames * self.frame_seq_length | |
| def generate_and_sync_list(self, num_blocks, num_denoising_steps, device): | |
| rank = dist.get_rank() if dist.is_initialized() else 0 | |
| if rank == 0: | |
| # Generate random indices | |
| indices = torch.randint( | |
| low=0, | |
| high=num_denoising_steps, | |
| size=(num_blocks,), | |
| device=device | |
| ) | |
| if self.last_step_only: | |
| indices = torch.ones_like(indices) * (num_denoising_steps - 1) | |
| else: | |
| indices = torch.empty(num_blocks, dtype=torch.long, device=device) | |
| dist.broadcast(indices, src=0) # Broadcast the random indices to all ranks | |
| return indices.tolist() | |
| def inference_with_trajectory( | |
| self, | |
| noise: torch.Tensor, | |
| initial_latent: Optional[torch.Tensor] = None, | |
| return_sim_step: bool = False, | |
| **conditional_dict | |
| ) -> torch.Tensor: | |
| batch_size, num_frames, num_channels, height, width = noise.shape | |
| if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None): | |
| # If the first frame is independent and the first frame is provided, then the number of frames in the | |
| # noise should still be a multiple of num_frame_per_block | |
| assert num_frames % self.num_frame_per_block == 0 | |
| num_blocks = num_frames // self.num_frame_per_block | |
| else: | |
| # Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning | |
| assert (num_frames - 1) % self.num_frame_per_block == 0 | |
| num_blocks = (num_frames - 1) // self.num_frame_per_block | |
| num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0 | |
| num_output_frames = num_frames + num_input_frames # add the initial latent frames | |
| output = torch.zeros( | |
| [batch_size, num_output_frames, num_channels, height, width], | |
| device=noise.device, | |
| dtype=noise.dtype | |
| ) | |
| # Step 1: Initialize KV cache to all zeros | |
| self._initialize_kv_cache( | |
| batch_size=batch_size, dtype=noise.dtype, device=noise.device | |
| ) | |
| self._initialize_crossattn_cache( | |
| batch_size=batch_size, dtype=noise.dtype, device=noise.device | |
| ) | |
| # if self.kv_cache1 is None: | |
| # self._initialize_kv_cache( | |
| # batch_size=batch_size, | |
| # dtype=noise.dtype, | |
| # device=noise.device, | |
| # ) | |
| # self._initialize_crossattn_cache( | |
| # batch_size=batch_size, | |
| # dtype=noise.dtype, | |
| # device=noise.device | |
| # ) | |
| # else: | |
| # # reset cross attn cache | |
| # for block_index in range(self.num_transformer_blocks): | |
| # self.crossattn_cache[block_index]["is_init"] = False | |
| # # reset kv cache | |
| # for block_index in range(len(self.kv_cache1)): | |
| # self.kv_cache1[block_index]["global_end_index"] = torch.tensor( | |
| # [0], dtype=torch.long, device=noise.device) | |
| # self.kv_cache1[block_index]["local_end_index"] = torch.tensor( | |
| # [0], dtype=torch.long, device=noise.device) | |
| # Step 2: Cache context feature | |
| current_start_frame = 0 | |
| if initial_latent is not None: | |
| timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0 | |
| # Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks | |
| output[:, :1] = initial_latent | |
| with torch.no_grad(): | |
| self.generator( | |
| noisy_image_or_video=initial_latent, | |
| conditional_dict=conditional_dict, | |
| timestep=timestep * 0, | |
| kv_cache=self.kv_cache1, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| current_start_frame += 1 | |
| # Step 3: Temporal denoising loop | |
| all_num_frames = [self.num_frame_per_block] * num_blocks | |
| if self.independent_first_frame and initial_latent is None: | |
| all_num_frames = [1] + all_num_frames | |
| num_denoising_steps = len(self.denoising_step_list) | |
| exit_flags = self.generate_and_sync_list(len(all_num_frames), num_denoising_steps, device=noise.device) | |
| start_gradient_frame_index = num_output_frames - 21 | |
| # for block_index in range(num_blocks): | |
| for block_index, current_num_frames in enumerate(all_num_frames): | |
| noisy_input = noise[ | |
| :, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames] | |
| # Step 3.1: Spatial denoising loop | |
| for index, current_timestep in enumerate(self.denoising_step_list): | |
| if self.same_step_across_blocks: | |
| exit_flag = (index == exit_flags[0]) | |
| else: | |
| exit_flag = (index == exit_flags[block_index]) # Only backprop at the randomly selected timestep (consistent across all ranks) | |
| timestep = torch.ones( | |
| [batch_size, current_num_frames], | |
| device=noise.device, | |
| dtype=torch.int64) * current_timestep | |
| if not exit_flag: | |
| with torch.no_grad(): | |
| _, denoised_pred = self.generator( | |
| noisy_image_or_video=noisy_input, | |
| conditional_dict=conditional_dict, | |
| timestep=timestep, | |
| kv_cache=self.kv_cache1, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| next_timestep = self.denoising_step_list[index + 1] | |
| noisy_input = self.scheduler.add_noise( | |
| denoised_pred.flatten(0, 1), | |
| torch.randn_like(denoised_pred.flatten(0, 1)), | |
| next_timestep * torch.ones( | |
| [batch_size * current_num_frames], device=noise.device, dtype=torch.long) | |
| ).unflatten(0, denoised_pred.shape[:2]) | |
| else: | |
| # for getting real output | |
| # with torch.set_grad_enabled(current_start_frame >= start_gradient_frame_index): | |
| if current_start_frame < start_gradient_frame_index: | |
| with torch.no_grad(): | |
| _, denoised_pred = self.generator( | |
| noisy_image_or_video=noisy_input, | |
| conditional_dict=conditional_dict, | |
| timestep=timestep, | |
| kv_cache=self.kv_cache1, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| else: | |
| _, denoised_pred = self.generator( | |
| noisy_image_or_video=noisy_input, | |
| conditional_dict=conditional_dict, | |
| timestep=timestep, | |
| kv_cache=self.kv_cache1, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| break | |
| # Step 3.2: record the model's output | |
| output[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred | |
| # Step 3.3: rerun with timestep zero to update the cache | |
| context_timestep = torch.ones_like(timestep) * self.context_noise | |
| # add context noise | |
| denoised_pred = self.scheduler.add_noise( | |
| denoised_pred.flatten(0, 1), | |
| torch.randn_like(denoised_pred.flatten(0, 1)), | |
| context_timestep * torch.ones( | |
| [batch_size * current_num_frames], device=noise.device, dtype=torch.long) | |
| ).unflatten(0, denoised_pred.shape[:2]) | |
| with torch.no_grad(): | |
| self.generator( | |
| noisy_image_or_video=denoised_pred, | |
| conditional_dict=conditional_dict, | |
| timestep=context_timestep, | |
| kv_cache=self.kv_cache1, | |
| crossattn_cache=self.crossattn_cache, | |
| current_start=current_start_frame * self.frame_seq_length | |
| ) | |
| # Step 3.4: update the start and end frame indices | |
| current_start_frame += current_num_frames | |
| # Step 3.5: Return the denoised timestep | |
| if not self.same_step_across_blocks: | |
| denoised_timestep_from, denoised_timestep_to = None, None | |
| elif exit_flags[0] == len(self.denoising_step_list) - 1: | |
| denoised_timestep_to = 0 | |
| denoised_timestep_from = 1000 - torch.argmin( | |
| (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item() | |
| else: | |
| denoised_timestep_to = 1000 - torch.argmin( | |
| (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0] + 1].cuda()).abs(), dim=0).item() | |
| denoised_timestep_from = 1000 - torch.argmin( | |
| (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item() | |
| if return_sim_step: | |
| return output, denoised_timestep_from, denoised_timestep_to, exit_flags[0] + 1 | |
| return output, denoised_timestep_from, denoised_timestep_to | |
| def _initialize_kv_cache(self, batch_size, dtype, device): | |
| """ | |
| Initialize a Per-GPU KV cache for the Wan model. | |
| """ | |
| kv_cache1 = [] | |
| for _ in range(self.num_transformer_blocks): | |
| kv_cache1.append({ | |
| "k": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device), | |
| "v": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device), | |
| "global_end_index": torch.tensor([0], dtype=torch.long, device=device), | |
| "local_end_index": torch.tensor([0], dtype=torch.long, device=device) | |
| }) | |
| self.kv_cache1 = kv_cache1 # always store the clean cache | |
| def _initialize_crossattn_cache(self, batch_size, dtype, device): | |
| """ | |
| Initialize a Per-GPU cross-attention cache for the Wan model. | |
| """ | |
| crossattn_cache = [] | |
| for _ in range(self.num_transformer_blocks): | |
| crossattn_cache.append({ | |
| "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device), | |
| "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device), | |
| "is_init": False | |
| }) | |
| self.crossattn_cache = crossattn_cache | |