Spaces:
Runtime error
Runtime error
| import math | |
| from dataclasses import dataclass | |
| import numpy as np | |
| import torch | |
| from torch import Tensor, nn | |
| from .connector_edit import Qwen2Connector | |
| from .layers import DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock | |
| class Step1XParams: | |
| in_channels: int | |
| out_channels: int | |
| vec_in_dim: int | |
| context_in_dim: int | |
| hidden_size: int | |
| mlp_ratio: float | |
| num_heads: int | |
| depth: int | |
| depth_single_blocks: int | |
| axes_dim: list[int] | |
| theta: int | |
| qkv_bias: bool | |
| class Step1XEdit(nn.Module): | |
| """ | |
| Transformer model for flow matching on sequences. | |
| """ | |
| def __init__(self, params: Step1XParams): | |
| super().__init__() | |
| self.params = params | |
| self.in_channels = params.in_channels | |
| self.out_channels = params.out_channels | |
| if params.hidden_size % params.num_heads != 0: | |
| raise ValueError( | |
| f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
| ) | |
| pe_dim = params.hidden_size // params.num_heads | |
| if sum(params.axes_dim) != pe_dim: | |
| raise ValueError( | |
| f"Got {params.axes_dim} but expected positional dim {pe_dim}" | |
| ) | |
| self.hidden_size = params.hidden_size | |
| self.num_heads = params.num_heads | |
| self.pe_embedder = EmbedND( | |
| dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim | |
| ) | |
| self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
| self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
| self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
| self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| DoubleStreamBlock( | |
| self.hidden_size, | |
| self.num_heads, | |
| mlp_ratio=params.mlp_ratio, | |
| qkv_bias=params.qkv_bias, | |
| ) | |
| for _ in range(params.depth) | |
| ] | |
| ) | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| SingleStreamBlock( | |
| self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio | |
| ) | |
| for _ in range(params.depth_single_blocks) | |
| ] | |
| ) | |
| self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
| self.connector = Qwen2Connector() | |
| def timestep_embedding( | |
| t: Tensor, dim, max_period=10000, time_factor: float = 1000.0 | |
| ): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| t = time_factor * t | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ).to(t.device) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat( | |
| [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
| ) | |
| if torch.is_floating_point(t): | |
| embedding = embedding.to(t) | |
| return embedding | |
| def forward( | |
| self, | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt: Tensor, | |
| txt_ids: Tensor, | |
| timesteps: Tensor, | |
| y: Tensor, | |
| ) -> Tensor: | |
| if img.ndim != 3 or txt.ndim != 3: | |
| raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
| img = self.img_in(img) | |
| vec = self.time_in(self.timestep_embedding(timesteps, 256)) | |
| vec = vec + self.vector_in(y) | |
| txt = self.txt_in(txt) | |
| ids = torch.cat((txt_ids, img_ids), dim=1) | |
| pe = self.pe_embedder(ids) | |
| for block in self.double_blocks: | |
| img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
| img = torch.cat((txt, img), 1) | |
| for block in self.single_blocks: | |
| img = block(img, vec=vec, pe=pe) | |
| img = img[:, txt.shape[1] :, ...] | |
| img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
| return img |