Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,11 @@ import marimo
|
|
3 |
__generated_with = "0.11.5"
|
4 |
app = marimo.App(width="medium")
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@app.cell(hide_code=True)
|
8 |
def _(mo):
|
@@ -131,8 +136,6 @@ def _(mo):
|
|
131 |
|
132 |
@app.cell
|
133 |
def _(errors, plt, scalar_products):
|
134 |
-
|
135 |
-
|
136 |
# Create a figure with two subplots side by side
|
137 |
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
138 |
|
@@ -171,8 +174,7 @@ def _(mo):
|
|
171 |
|
172 |
1. Prove the convergence of the algorithm for generic initializations.
|
173 |
2. Find the speed of convergence for arbitrary $n$
|
174 |
-
3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator
|
175 |
-
$$[u_{ij}, u_{kl}] \, ?$$
|
176 |
"""
|
177 |
)
|
178 |
return
|
@@ -187,7 +189,7 @@ def _(mo):
|
|
187 |
|
188 |
1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998.
|
189 |
2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007.
|
190 |
-
3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017)
|
191 |
"""
|
192 |
)
|
193 |
return
|
@@ -230,8 +232,6 @@ def _(np):
|
|
230 |
scalar_products.append(scalar_product)
|
231 |
|
232 |
return scalar_products
|
233 |
-
|
234 |
-
|
235 |
return (
|
236 |
error_QPM,
|
237 |
generate_random_complex_gaussian_matrix,
|
@@ -306,4 +306,4 @@ def _():
|
|
306 |
|
307 |
|
308 |
if __name__ == "__main__":
|
309 |
-
app.run()
|
|
|
3 |
__generated_with = "0.11.5"
|
4 |
app = marimo.App(width="medium")
|
5 |
|
6 |
+
# /// script
|
7 |
+
# [tool.marimo.display]
|
8 |
+
# theme = "dark"
|
9 |
+
# ///
|
10 |
+
|
11 |
|
12 |
@app.cell(hide_code=True)
|
13 |
def _(mo):
|
|
|
136 |
|
137 |
@app.cell
|
138 |
def _(errors, plt, scalar_products):
|
|
|
|
|
139 |
# Create a figure with two subplots side by side
|
140 |
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
|
141 |
|
|
|
174 |
|
175 |
1. Prove the convergence of the algorithm for generic initializations.
|
176 |
2. Find the speed of convergence for arbitrary $n$
|
177 |
+
3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator $[u_{ij}, u_{kl}]$?
|
|
|
178 |
"""
|
179 |
)
|
180 |
return
|
|
|
189 |
|
190 |
1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998.
|
191 |
2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007.
|
192 |
+
3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017).
|
193 |
"""
|
194 |
)
|
195 |
return
|
|
|
232 |
scalar_products.append(scalar_product)
|
233 |
|
234 |
return scalar_products
|
|
|
|
|
235 |
return (
|
236 |
error_QPM,
|
237 |
generate_random_complex_gaussian_matrix,
|
|
|
306 |
|
307 |
|
308 |
if __name__ == "__main__":
|
309 |
+
app.run()
|