inechita commited on
Commit
21f90dc
·
verified ·
1 Parent(s): b6f407d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +210 -371
app.py CHANGED
@@ -1,470 +1,309 @@
1
  import marimo
2
 
3
- __generated_with = "0.9.2"
4
- app = marimo.App()
5
 
6
 
7
- @app.cell
8
- def __():
9
- import marimo as mo
10
-
11
- mo.md("# Welcome to marimo! 🌊🍃")
12
- return (mo,)
13
-
14
-
15
- @app.cell
16
- def __(mo):
17
- slider = mo.ui.slider(1, 22)
18
- return (slider,)
19
-
20
-
21
- @app.cell
22
- def __(mo, slider):
23
  mo.md(
24
- f"""
25
- marimo is a **reactive** Python notebook.
26
-
27
- This means that unlike traditional notebooks, marimo notebooks **run
28
- automatically** when you modify them or
29
- interact with UI elements, like this slider: {slider}.
30
-
31
- {"##" + "🍃" * slider.value}
32
  """
33
  )
34
  return
35
 
36
 
37
  @app.cell(hide_code=True)
38
- def __(mo):
39
- mo.accordion(
40
- {
41
- "Tip: disabling automatic execution": mo.md(
42
- rf"""
43
- marimo lets you disable automatic execution: just go into the
44
- notebook settings and set
45
-
46
- "Runtime > On Cell Change" to "lazy".
47
-
48
- When the runtime is lazy, after running a cell, marimo marks its
49
- descendants as stale instead of automatically running them. The
50
- lazy runtime puts you in control over when cells are run, while
51
- still giving guarantees about the notebook state.
52
- """
53
- )
54
- }
55
- )
56
- return
57
 
 
 
58
 
59
- @app.cell(hide_code=True)
60
- def __(mo):
61
- mo.md(
62
- """
63
- Tip: This is a tutorial notebook. You can create your own notebooks
64
- by entering `marimo edit` at the command line.
65
  """
66
- ).callout()
67
  return
68
 
69
 
70
  @app.cell(hide_code=True)
71
- def __(mo):
72
  mo.md(
73
  """
74
- ## 1. Reactive execution
75
 
76
- A marimo notebook is made up of small blocks of Python code called
77
- cells.
78
-
79
- marimo reads your cells and models the dependencies among them: whenever
80
- a cell that defines a global variable is run, marimo
81
- **automatically runs** all cells that reference that variable.
82
-
83
- Reactivity keeps your program state and outputs in sync with your code,
84
- making for a dynamic programming environment that prevents bugs before they
85
- happen.
86
  """
87
  )
88
  return
89
 
90
 
91
- @app.cell(hide_code=True)
92
- def __(changed, mo):
93
- (
94
- mo.md(
95
- f"""
96
- **✨ Nice!** The value of `changed` is now {changed}.
97
-
98
- When you updated the value of the variable `changed`, marimo
99
- **reacted** by running this cell automatically, because this cell
100
- references the global variable `changed`.
101
-
102
- Reactivity ensures that your notebook state is always
103
- consistent, which is crucial for doing good science; it's also what
104
- enables marimo notebooks to double as tools and apps.
105
- """
106
- )
107
- if changed
108
- else mo.md(
109
- """
110
- **🌊 See it in action.** In the next cell, change the value of the
111
- variable `changed` to `True`, then click the run button.
112
- """
113
- )
114
- )
115
- return
116
-
117
-
118
  @app.cell
119
- def __():
120
- changed = False
121
- return (changed,)
122
-
123
-
124
- @app.cell(hide_code=True)
125
- def __(mo):
126
- mo.accordion(
127
- {
128
- "Tip: execution order": (
129
- """
130
- The order of cells on the page has no bearing on
131
- the order in which cells are executed: marimo knows that a cell
132
- reading a variable must run after the cell that defines it. This
133
- frees you to organize your code in the way that makes the most
134
- sense for you.
135
- """
136
- )
137
- }
138
- )
139
- return
140
-
141
-
142
- @app.cell(hide_code=True)
143
- def __(mo):
144
  mo.md(
145
  """
146
- **Global names must be unique.** To enable reactivity, marimo imposes a
147
- constraint on how names appear in cells: no two cells may define the same
148
- variable.
149
  """
150
  )
151
  return
152
 
153
 
154
- @app.cell(hide_code=True)
155
- def __(mo):
156
- mo.accordion(
157
- {
158
- "Tip: encapsulation": (
159
- """
160
- By encapsulating logic in functions, classes, or Python modules,
161
- you can minimize the number of global variables in your notebook.
162
- """
163
- )
164
- }
 
 
165
  )
166
  return
167
 
168
 
169
- @app.cell(hide_code=True)
170
- def __(mo):
171
- mo.accordion(
172
- {
173
- "Tip: private variables": (
174
- """
175
- Variables prefixed with an underscore are "private" to a cell, so
176
- they can be defined by multiple cells.
177
- """
178
- )
179
- }
180
  )
181
  return
182
 
183
 
184
- @app.cell(hide_code=True)
185
- def __(mo):
186
  mo.md(
187
  """
188
- ## 2. UI elements
189
-
190
- Cells can output interactive UI elements. Interacting with a UI
191
- element **automatically triggers notebook execution**: when
192
- you interact with a UI element, its value is sent back to Python, and
193
- every cell that references that element is re-run.
194
-
195
- marimo provides a library of UI elements to choose from under
196
- `marimo.ui`.
197
  """
198
  )
199
  return
200
 
201
 
202
  @app.cell
203
- def __(mo):
204
- mo.md("""**🌊 Some UI elements.** Try interacting with the below elements.""")
205
- return
 
 
206
 
207
 
208
  @app.cell
209
- def __(mo):
210
- icon = mo.ui.dropdown(["🍃", "🌊", "✨"], value="🍃")
211
- return (icon,)
212
 
213
 
214
  @app.cell
215
- def __(icon, mo):
216
- repetitions = mo.ui.slider(1, 16, label=f"number of {icon.value}: ")
217
- return (repetitions,)
218
 
219
 
220
  @app.cell
221
- def __(icon, repetitions):
222
- icon, repetitions
223
  return
224
 
225
 
226
  @app.cell
227
- def __(icon, mo, repetitions):
228
- mo.md("# " + icon.value * repetitions.value)
229
- return
 
230
 
231
 
232
- @app.cell(hide_code=True)
233
- def __(mo):
234
- mo.md(
235
- """
236
- ## 3. marimo is just Python
237
 
238
- marimo cells parse Python (and only Python), and marimo notebooks are
239
- stored as pure Python files — outputs are _not_ included. There's no
240
- magical syntax.
241
 
242
- The Python files generated by marimo are:
 
243
 
244
- - easily versioned with git, yielding minimal diffs
245
- - legible for both humans and machines
246
- - formattable using your tool of choice,
247
- - usable as Python scripts, with UI elements taking their default
248
- values, and
249
- - importable by other modules (more on that in the future).
250
- """
251
- )
252
- return
253
 
 
 
 
 
 
 
254
 
255
- @app.cell(hide_code=True)
256
- def __(mo):
257
- mo.md(
258
- """
259
- ## 4. Running notebooks as apps
260
 
261
- marimo notebooks can double as apps. Click the app window icon in the
262
- bottom-right to see this notebook in "app view."
263
 
264
- Serve a notebook as an app with `marimo run` at the command-line.
265
- Of course, you can use marimo just to level-up your
266
- notebooking, without ever making apps.
267
- """
268
- )
269
  return
270
 
271
 
272
- @app.cell(hide_code=True)
273
- def __(mo):
274
  mo.md(
275
- """
276
- ## 5. The `marimo` command-line tool
277
-
278
- **Creating and editing notebooks.** Use
279
-
280
- ```
281
- marimo edit
282
- ```
283
-
284
- in a terminal to start the marimo notebook server. From here
285
- you can create a new notebook or edit existing ones.
286
-
287
-
288
- **Running as apps.** Use
289
-
290
- ```
291
- marimo run notebook.py
292
- ```
293
-
294
- to start a webserver that serves your notebook as an app in read-only mode,
295
- with code cells hidden.
296
-
297
- **Convert a Jupyter notebook.** Convert a Jupyter notebook to a marimo
298
- notebook using `marimo convert`:
299
-
300
- ```
301
- marimo convert your_notebook.ipynb > your_app.py
302
- ```
303
-
304
- **Tutorials.** marimo comes packaged with tutorials:
305
-
306
- - `dataflow`: more on marimo's automatic execution
307
- - `ui`: how to use UI elements
308
- - `markdown`: how to write markdown, with interpolated values and
309
- LaTeX
310
- - `plots`: how plotting works in marimo
311
- - `sql`: how to use SQL
312
- - `layout`: layout elements in marimo
313
- - `fileformat`: how marimo's file format works
314
- - `markdown-format`: for using `.md` files in marimo
315
- - `for-jupyter-users`: if you are coming from Jupyter
316
-
317
- Start a tutorial with `marimo tutorial`; for example,
318
-
319
- ```
320
- marimo tutorial dataflow
321
- ```
322
-
323
- In addition to tutorials, we have examples in our
324
- [our GitHub repo](https://www.github.com/marimo-team/marimo/tree/main/examples).
325
  """
326
  )
327
  return
328
 
329
 
330
- @app.cell(hide_code=True)
331
- def __(mo):
332
  mo.md(
333
- """
334
- ## 6. The marimo editor
 
335
 
336
- Here are some tips to help you get started with the marimo editor.
 
 
337
  """
338
  )
339
  return
340
 
341
 
342
  @app.cell
343
- def __(mo, tips):
344
- mo.accordion(tips)
345
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
 
347
 
348
- @app.cell(hide_code=True)
349
- def __(mo):
350
- mo.md("""## Finally, a fun fact""")
351
- return
 
 
352
 
353
 
354
- @app.cell(hide_code=True)
355
- def __(mo):
356
- mo.md(
357
- """
358
- The name "marimo" is a reference to a type of algae that, under
359
- the right conditions, clumps together to form a small sphere
360
- called a "marimo moss ball". Made of just strands of algae, these
361
- beloved assemblages are greater than the sum of their parts.
362
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
  )
364
- return
365
 
366
 
367
- @app.cell(hide_code=True)
368
- def __():
369
- tips = {
370
- "Saving": (
371
- """
372
- **Saving**
373
-
374
- - _Name_ your app using the box at the top of the screen, or
375
- with `Ctrl/Cmd+s`. You can also create a named app at the
376
- command line, e.g., `marimo edit app_name.py`.
377
-
378
- - _Save_ by clicking the save icon on the bottom right, or by
379
- inputting `Ctrl/Cmd+s`. By default marimo is configured
380
- to autosave.
381
- """
382
- ),
383
- "Running": (
384
- """
385
- 1. _Run a cell_ by clicking the play ( ▷ ) button on the top
386
- right of a cell, or by inputting `Ctrl/Cmd+Enter`.
387
-
388
- 2. _Run a stale cell_ by clicking the yellow run button on the
389
- right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
390
- stale when its code has been modified but not run.
391
-
392
- 3. _Run all stale cells_ by clicking the play ( ▷ ) button on
393
- the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
394
- """
395
- ),
396
- "Console Output": (
397
- """
398
- Console output (e.g., `print()` statements) is shown below a
399
- cell.
400
- """
401
- ),
402
- "Creating, Moving, and Deleting Cells": (
403
- """
404
- 1. _Create_ a new cell above or below a given one by clicking
405
- the plus button to the left of the cell, which appears on
406
- mouse hover.
407
-
408
- 2. _Move_ a cell up or down by dragging on the handle to the
409
- right of the cell, which appears on mouse hover.
410
-
411
- 3. _Delete_ a cell by clicking the trash bin icon. Bring it
412
- back by clicking the undo button on the bottom right of the
413
- screen, or with `Ctrl/Cmd+Shift+z`.
414
- """
415
- ),
416
- "Disabling Automatic Execution": (
417
- """
418
- Via the notebook settings (gear icon) or footer panel, you
419
- can disable automatic execution. This is helpful when
420
- working with expensive notebooks or notebooks that have
421
- side-effects like database transactions.
422
- """
423
- ),
424
- "Disabling Cells": (
425
- """
426
- You can disable a cell via the cell context menu.
427
- marimo will never run a disabled cell or any cells that depend on it.
428
- This can help prevent accidental execution of expensive computations
429
- when editing a notebook.
430
- """
431
- ),
432
- "Code Folding": (
433
- """
434
- You can collapse or fold the code in a cell by clicking the arrow
435
- icons in the line number column to the left, or by using keyboard
436
- shortcuts.
437
-
438
- Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
439
- quickly fold or unfold all cells.
440
- """
441
- ),
442
- "Code Formatting": (
443
- """
444
- If you have [ruff](https://github.com/astral-sh/ruff) installed,
445
- you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
446
- """
447
- ),
448
- "Command Palette": (
449
- """
450
- Use `Ctrl/Cmd+k` to open the command palette.
451
- """
452
- ),
453
- "Keyboard Shortcuts": (
454
- """
455
- Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
456
- view a list of all keyboard shortcuts.
457
- """
458
- ),
459
- "Configuration": (
460
- """
461
- Configure the editor by clicking the gears icon near the top-right
462
- of the screen.
463
- """
464
- ),
465
- }
466
- return (tips,)
467
 
468
 
469
  if __name__ == "__main__":
470
- app.run()
 
1
  import marimo
2
 
3
+ __generated_with = "0.11.5"
4
+ app = marimo.App(width="medium")
5
 
6
 
7
+ @app.cell(hide_code=True)
8
+ def _(mo):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  mo.md(
10
+ r"""
11
+ # Generate random flat quantum permutation matrices
12
+ #
 
 
 
 
 
13
  """
14
  )
15
  return
16
 
17
 
18
  @app.cell(hide_code=True)
19
+ def _(mo):
20
+ mo.md(
21
+ r"""
22
+ Let $A$ be a unital $C^*$-algebra. An $n \times n$ matrix $u = (u_{ij})_{1\le i,j\le n} \in \mathcal M_n(A)$
23
+ is called a **quantum permtuation matrix** if it satisfies the conditions below:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ 1. *Projection Entries:* Each entry is a projection:
26
+ $$u_{ij}^2 = u_{ij} \quad \text{and} \quad u_{ij}^* = u_{ij} \quad \text{for all } i,j.$$
27
 
28
+ 2. *Row and Column Sums:* The entries in each row and each column sum to the unit of $A$:
29
+ $$\sum_{j=1}^n u_{ij} = 1_A \quad \text{for all } i=1,\dots,n,$$
30
+ $$\sum_{i=1}^n u_{ij} = 1_A \quad \text{for all } j=1,\dots,n.$$
 
 
 
31
  """
32
+ )
33
  return
34
 
35
 
36
  @app.cell(hide_code=True)
37
+ def _(mo):
38
  mo.md(
39
  """
40
+ We are interested here in the special case where:
41
 
42
+ 1. the algebra $A$ is finite dimensional: $A = \mathcal M_d(\mathbb C)$
43
+ 2. the projections $u_{ij}$ have *unit rank* (we call $u$ *flat*); in particular $d=n$.
 
 
 
 
 
 
 
 
44
  """
45
  )
46
  return
47
 
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  @app.cell
50
+ def _(mo):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  mo.md(
52
  """
53
+ ## An alogrithm for generating random flat quantum permutation matrices
54
+ ##
 
55
  """
56
  )
57
  return
58
 
59
 
60
+ @app.cell
61
+ def _(mo):
62
+ mo.md(
63
+ r"""
64
+ We propose the following very simple algorithm for generating quantum permutation matrices, based on normalizing the rows and the columns of a matrix of unit rank projections. The alternating normalization of rows and columns is inspired by the **Sinkhorn algorithm** for producing random bistochastic matrices.
65
+
66
+ 1. Start from a random matrix: $u_{ij}$ is the orthogonal projection on a random gaussian vector
67
+ 2. While the error is larger than some predefined constant and the maximal number of steps has not been attained:
68
+ 3. Normalize each row of $u$
69
+ 4. Normalize each column of $u$
70
+ 5. End-while
71
+ 6. Output the matrix $u$
72
+ """
73
  )
74
  return
75
 
76
 
77
+ @app.cell
78
+ def _(mo):
79
+ mo.md(
80
+ r"""
81
+ The row (respectively the column) normalization procedures are performed as follows. Collect all the vectors appearing on the $i$-th row of $u$ in a matrix $R_i$. Replace $R_i$ by $\tilde R_i$, the *closest unitary matrix* to $R_i$. This matrix can be obtained from the *singular value decomposition* of $R_i$:
82
+ $$\text{ if } R_i = V_i \Delta_i W_i^*, \, \text{ then }\, \tilde R_i = V_i W_i^*.$$
83
+ """
 
 
 
 
84
  )
85
  return
86
 
87
 
88
+ @app.cell
89
+ def _(mo):
90
  mo.md(
91
  """
92
+ ## Implementation
93
+ ##
 
 
 
 
 
 
 
94
  """
95
  )
96
  return
97
 
98
 
99
  @app.cell
100
+ def _(mo):
101
+ eps_slider = mo.ui.slider(0, 10, value=6)
102
+ max_iter_slider = mo.ui.slider(1, 10000, value=2000)
103
+ n_slider = mo.ui.slider(2, 20, step=1, value=4)
104
+ return eps_slider, max_iter_slider, n_slider
105
 
106
 
107
  @app.cell
108
+ def _(eps_slider, mo):
109
+ mo.md(f"-lg(Error tolerance): {eps_slider} \t error_tolerance = 1e-{eps_slider.value}")
110
+ return
111
 
112
 
113
  @app.cell
114
+ def _(max_iter_slider, mo):
115
+ mo.md(f"Max iterations: {max_iter_slider} \t max_iter = {max_iter_slider.value}")
116
+ return
117
 
118
 
119
  @app.cell
120
+ def _(mo, n_slider):
121
+ mo.md(f"Matrix dimension: {n_slider} \t n = {n_slider.value}")
122
  return
123
 
124
 
125
  @app.cell
126
+ def _(mo):
127
+ button = mo.ui.run_button(label="Randomize!")
128
+ button
129
+ return (button,)
130
 
131
 
132
+ @app.cell
133
+ def _(errors, plt, scalar_products):
 
 
 
134
 
 
 
 
135
 
136
+ # Create a figure with two subplots side by side
137
+ fig, axs = plt.subplots(1, 2, figsize=(12, 5))
138
 
139
+ # Plot the errors on a log scale in the first subplot
140
+ axs[0].semilogy(errors)
141
+ axs[0].set_xlabel('Iteration')
142
+ axs[0].set_ylabel('Error (log scale)')
143
+ axs[0].set_title('Error Convergence')
144
+ axs[0].grid(True)
 
 
 
145
 
146
+ # Plot the histogram in the second subplot
147
+ axs[1].hist(scalar_products, bins=30, edgecolor='black')
148
+ axs[1].set_xlabel('Absolute Values Squared of Scalar Products')
149
+ axs[1].set_ylabel('Frequency')
150
+ axs[1].set_title('Histogram of Absolute Values Squared of Scalar Products')
151
+ axs[1].grid(True)
152
 
153
+ # Adjust layout to prevent overlap
154
+ plt.tight_layout()
155
+ plt.gca()
156
+ return axs, fig
 
157
 
 
 
158
 
159
+ @app.cell
160
+ def _(mo):
161
+ mo.md(r"""Note that for $n=2,3$ the histogram of scalar product shows only 0's and 1's: the vectors are either colinear or orthogonal. In other words, the elements $u_{ij}$ **commute**. For $n \geq 4$ this is no longer the case: the scalar product between vectors can take arbitrary values.""")
 
 
162
  return
163
 
164
 
165
+ @app.cell
166
+ def _(mo):
167
  mo.md(
168
+ r"""
169
+ ## Open questions
170
+ ##
171
+
172
+ 1. Prove the convergence of the algorithm for generic initializations.
173
+ 2. Find the speed of convergence for arbitrary $n$
174
+ 3. What is the distribution of the scalar products for (large / given) $n$? How about the maximal norm of a commutator
175
+ $$[u_{ij}, u_{kl}] \, ?$$
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  """
177
  )
178
  return
179
 
180
 
181
+ @app.cell
182
+ def _(mo):
183
  mo.md(
184
+ r"""
185
+ ## References
186
+ ##
187
 
188
+ 1. S. Wang, “Quantum symmetry groups of finite spaces,” _Communications in mathematical physics_, vol. 195, no. 1, pp. 195–211, 1998.
189
+ 2. T. Banica, J. Bichon, and B. Collins, “Quantum permutation groups: a survey,” _Banach Center Publications_, vol. 78, no. 1, pp. 13–34, 2007.
190
+ 3. T. Banica, I. Nechita, "Flat matrix models for quantum permutation groups," _Adv. Appl. Math._ 83, 24-46 (2017)
191
  """
192
  )
193
  return
194
 
195
 
196
  @app.cell
197
+ def _(np):
198
+ def generate_random_complex_gaussian_matrix(n):
199
+ matrix = np.empty((n, n, n), dtype=np.complex128)
200
+ for i in range(n):
201
+ for j in range(n):
202
+ real_part = np.random.normal(size=n)
203
+ imag_part = np.random.normal(size=n)
204
+ matrix[i, j] = (real_part + 1j * imag_part) / np.sqrt(2)
205
+ return matrix
206
+
207
+ def orthonormalize_vectors_svd(vectors):
208
+ u, _, v = np.linalg.svd(vectors)
209
+ return u @ v
210
+
211
+ def error_QPM(u):
212
+ err = -1;
213
+
214
+ for i in range(u.shape[0]):
215
+ slice = u[i, :, :]
216
+ err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
217
+ slice = u[:, i, :]
218
+ err = max(err, np.linalg.norm(slice @ slice.conj().T - np.eye(slice.shape[0])))
219
+
220
+ return err
221
+
222
+ def scalar_products_QPM(u):
223
+ # Calculate the absolute values squared of the scalar products of the vectors in the matrix u
224
+ scalar_products = []
225
+ for i in range(u.shape[0]):
226
+ for j in range(1, u.shape[0]):
227
+ for k in range(1, u.shape[0]):
228
+ for l in range(1, u.shape[0]):
229
+ scalar_product = np.abs(np.dot(u[i,j,:], u[k,l,:].conj()))**2
230
+ scalar_products.append(scalar_product)
231
+
232
+ return scalar_products
233
+
234
+
235
+ return (
236
+ error_QPM,
237
+ generate_random_complex_gaussian_matrix,
238
+ orthonormalize_vectors_svd,
239
+ scalar_products_QPM,
240
+ )
241
 
242
 
243
+ @app.cell
244
+ def _():
245
+ import marimo as mo
246
+ import numpy as np
247
+ import matplotlib.pyplot as plt
248
+ return mo, np, plt
249
 
250
 
251
+ @app.cell
252
+ def _(
253
+ button,
254
+ eps_slider,
255
+ error_QPM,
256
+ generate_random_complex_gaussian_matrix,
257
+ max_iter_slider,
258
+ n_slider,
259
+ orthonormalize_vectors_svd,
260
+ scalar_products_QPM,
261
+ ):
262
+ button
263
+
264
+ u = generate_random_complex_gaussian_matrix(n_slider.value)
265
+
266
+ error_tolerance = 10**(-eps_slider.value)
267
+ max_iter = max_iter_slider.value
268
+
269
+ iter = 0
270
+ error = error_QPM(u)
271
+ errors = [error] # Initialize a list to store errors
272
+ scalar_products = scalar_products_QPM(u) # Initialize the scalar product list
273
+
274
+ while error > error_tolerance and iter < max_iter:
275
+
276
+ # orthonormalize rows
277
+ for i in range(n_slider.value):
278
+ u[i, :, :] = orthonormalize_vectors_svd(u[i, :, :])
279
+
280
+ # orthonormalize columns
281
+ for j in range(n_slider.value):
282
+ u[:, j, :] = orthonormalize_vectors_svd(u[:, j, :])
283
+
284
+ error = error_QPM(u)
285
+ errors.append(error) # Append the current error to the list
286
+
287
+ if iter % 10 == 0:
288
+ scalar_products = scalar_products_QPM(u) # Update scalar prodcuts
289
+ iter += 1
290
+ return (
291
+ error,
292
+ error_tolerance,
293
+ errors,
294
+ i,
295
+ iter,
296
+ j,
297
+ max_iter,
298
+ scalar_products,
299
+ u,
300
  )
 
301
 
302
 
303
+ @app.cell
304
+ def _():
305
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
 
307
 
308
  if __name__ == "__main__":
309
+ app.run()