imsanjoykb's picture
Update app.py
82535c8 verified
raw
history blame
5.72 kB
import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly SQL Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
# Import necessary libraries
import gradio as gr
# Define the prompt template
odoo_text2sql_prompt = """
Instruction: {instruction}
Input: {input_text}
Output: {output_text}
DB Schema: {db_schema}
"""
# Define the database schema
db_schema = """
CREATE TABLE product_product (
id SERIAL NOT NULL,
message_main_attachment_id INTEGER,
product_tmpl_id INTEGER NOT NULL,
create_uid INTEGER,
write_uid INTEGER,
default_code VARCHAR,
barcode VARCHAR,
combination_indices VARCHAR,
volume NUMERIC,
weight NUMERIC,
active BOOLEAN,
can_image_variant_1024_be_zoomed BOOLEAN,
create_date TIMESTAMP WITHOUT TIME ZONE,
write_date TIMESTAMP WITHOUT TIME ZONE,
store_qty_available DOUBLE PRECISION,
store_standard_price DOUBLE PRECISION,
store_sales_count DOUBLE PRECISION,
CONSTRAINT product_product_pkey PRIMARY KEY (id),
CONSTRAINT product_product_create_uid_fkey FOREIGN KEY(create_uid) REFERENCES res_users (id) ON DELETE SET NULL,
CONSTRAINT product_product_message_main_attachment_id_fkey FOREIGN KEY(message_main_attachment_id) REFERENCES ir_attachment (id) ON DELETE SET NULL,
CONSTRAINT product_product_product_tmpl_id_fkey FOREIGN KEY(product_tmpl_id) REFERENCES product_template (id) ON DELETE CASCADE,
CONSTRAINT product_product_write_uid_fkey FOREIGN KEY(write_uid) REFERENCES res_users (id) ON DELETE SET NULL
)
"""
# Function to generate SQL query (placeholder function)
def generate_sql(instruction, input_text):
return "Model is not loaded. Please ensure you have the necessary GPU resources."
# Function to clear inputs
def clear_inputs():
return "", ""
# Create the Gradio interface with enhanced features
with gr.Blocks(css="""
.centered {
display: flex;
justify-content: center;
align-items: center;
text-align: center;
}
.title {
font-size: 2em;
font-weight: bold;
margin-bottom: 20px;
}
.description {
font-size: 1.2em;
margin-bottom: 20px;
}
.button {
background-color: #007BFF; /* Sea blue color */
color: white;
border: none;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 12px;
}
.button:hover {
background-color: #0056b3;
}
""") as demo:
gr.Markdown('<div class="centered"><div class="title">DeepSQL AI Assistant</div></div>')
gr.Markdown('<div class="centered"><div class="description">Generate SQL queries for Database Schema based on Natural Language input.</div></div>')
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=7, placeholder="Enter the instruction here...", label="Instruction")
input_text = gr.Textbox(lines=7, placeholder="Enter the input text here...", label="Input Text")
clear_button = gr.Button("Clear", elem_classes="button")
with gr.Column():
output = gr.Textbox(lines=15, placeholder="Generated SQL query will appear here...", label="Output SQL Query")
feedback = gr.Textbox(lines=2, placeholder="Provide your feedback here...", label="Feedback")
examples = gr.Examples(
examples=[
["Find the top 5 products with the highest sales count.", "What are the top sales products?"],
["List all active products.", "Show me all active products."],
],
inputs=[instruction, input_text]
)
submit_button = gr.Button("Generate SQL", elem_classes="button")
submit_button.click(generate_sql, inputs=[instruction, input_text], outputs=output)
clear_button.click(clear_inputs, outputs=[instruction, input_text])
# Launch the Gradio interface with sharing enabled
demo.launch(share=True)