Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly SQL Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# Import necessary libraries | |
import gradio as gr | |
# Define the prompt template | |
odoo_text2sql_prompt = """ | |
Instruction: {instruction} | |
Input: {input_text} | |
Output: {output_text} | |
DB Schema: {db_schema} | |
""" | |
# Define the database schema | |
db_schema = """ | |
CREATE TABLE product_product ( | |
id SERIAL NOT NULL, | |
message_main_attachment_id INTEGER, | |
product_tmpl_id INTEGER NOT NULL, | |
create_uid INTEGER, | |
write_uid INTEGER, | |
default_code VARCHAR, | |
barcode VARCHAR, | |
combination_indices VARCHAR, | |
volume NUMERIC, | |
weight NUMERIC, | |
active BOOLEAN, | |
can_image_variant_1024_be_zoomed BOOLEAN, | |
create_date TIMESTAMP WITHOUT TIME ZONE, | |
write_date TIMESTAMP WITHOUT TIME ZONE, | |
store_qty_available DOUBLE PRECISION, | |
store_standard_price DOUBLE PRECISION, | |
store_sales_count DOUBLE PRECISION, | |
CONSTRAINT product_product_pkey PRIMARY KEY (id), | |
CONSTRAINT product_product_create_uid_fkey FOREIGN KEY(create_uid) REFERENCES res_users (id) ON DELETE SET NULL, | |
CONSTRAINT product_product_message_main_attachment_id_fkey FOREIGN KEY(message_main_attachment_id) REFERENCES ir_attachment (id) ON DELETE SET NULL, | |
CONSTRAINT product_product_product_tmpl_id_fkey FOREIGN KEY(product_tmpl_id) REFERENCES product_template (id) ON DELETE CASCADE, | |
CONSTRAINT product_product_write_uid_fkey FOREIGN KEY(write_uid) REFERENCES res_users (id) ON DELETE SET NULL | |
) | |
""" | |
# Function to generate SQL query (placeholder function) | |
def generate_sql(instruction, input_text): | |
return "Model is not loaded. Please ensure you have the necessary GPU resources." | |
# Function to clear inputs | |
def clear_inputs(): | |
return "", "" | |
# Create the Gradio interface with enhanced features | |
with gr.Blocks(css=""" | |
.centered { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
text-align: center; | |
} | |
.title { | |
font-size: 2em; | |
font-weight: bold; | |
margin-bottom: 20px; | |
} | |
.description { | |
font-size: 1.2em; | |
margin-bottom: 20px; | |
} | |
.button { | |
background-color: #007BFF; /* Sea blue color */ | |
color: white; | |
border: none; | |
padding: 10px 20px; | |
text-align: center; | |
text-decoration: none; | |
display: inline-block; | |
font-size: 16px; | |
margin: 4px 2px; | |
cursor: pointer; | |
border-radius: 12px; | |
} | |
.button:hover { | |
background-color: #0056b3; | |
} | |
""") as demo: | |
gr.Markdown('<div class="centered"><div class="title">DeepSQL AI Assistant</div></div>') | |
gr.Markdown('<div class="centered"><div class="description">Generate SQL queries for Database Schema based on Natural Language input.</div></div>') | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox(lines=7, placeholder="Enter the instruction here...", label="Instruction") | |
input_text = gr.Textbox(lines=7, placeholder="Enter the input text here...", label="Input Text") | |
clear_button = gr.Button("Clear", elem_classes="button") | |
with gr.Column(): | |
output = gr.Textbox(lines=15, placeholder="Generated SQL query will appear here...", label="Output SQL Query") | |
feedback = gr.Textbox(lines=2, placeholder="Provide your feedback here...", label="Feedback") | |
examples = gr.Examples( | |
examples=[ | |
["Find the top 5 products with the highest sales count.", "What are the top sales products?"], | |
["List all active products.", "Show me all active products."], | |
], | |
inputs=[instruction, input_text] | |
) | |
submit_button = gr.Button("Generate SQL", elem_classes="button") | |
submit_button.click(generate_sql, inputs=[instruction, input_text], outputs=output) | |
clear_button.click(clear_inputs, outputs=[instruction, input_text]) | |
# Launch the Gradio interface with sharing enabled | |
demo.launch(share=True) | |