File size: 6,236 Bytes
50a9c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import mysql.connector
import os

# Use a pipeline as a high-level helper
from transformers import pipeline

classifier_model = pipeline(
    "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1"
)

# get db info from env vars
db_host = os.environ.get("DB_HOST")
db_user = os.environ.get("DB_USER")
db_pass = os.environ.get("DB_PASS")
db_name = os.environ.get("DB_NAME")


db_connection = mysql.connector.connect(
    host=db_host,
    user=db_user,
    password=db_pass,
    database=db_name,
)

db_cursor = db_connection.cursor()


def get_potential_labels():
    # get potential labels from db
    potential_labels = db_cursor.execute(
        "SELECT message_category_name FROM message_categorys"
    )

    potential_labels = db_cursor.fetchall()

    potential_labels = [label[0] for label in potential_labels]

    return potential_labels


# make gloabl variable for potential labels
global potential_labels

potential_labels = get_potential_labels()


# Function to handle the classification
def classify_email(constituent_email):
    potential_labels = get_potential_labels()

    model_out = classifier_model(constituent_email, potential_labels, multi_label=True)
    top_labels = [
        label
        for label, score in zip(model_out["labels"], model_out["scores"])
        if score > 0.95
    ]
    if top_labels == []:
        # Find the index of the highest score
        max_score_index = model_out["scores"].index(max(model_out["scores"]))
        # Return the label with the highest score
        return model_out["labels"][max_score_index]

    return ", ".join(top_labels)


# Function to handle saving data
def save_data(orig_user_email, constituent_email, labels, user_response):
    # save the data to the database
    # orig_user_email should have volley 0
    # constituent_email should have volley 1
    # user_response should have volley 2
    # app_id, org_id, and person_id should be 0
    # subject should be "Email Classification and Response Tracking"
    # body should be the original email

    try:
        db_cursor.execute(
            "INSERT INTO messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (0, 0, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', 0)",
            (orig_user_email,),
        )

        db_cursor.execute(
            "INSERT INTO messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (0, 0, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', 1)",
            (constituent_email,),
        )

        db_cursor.execute(
            "INSERT INTO messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (0, 0, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', 2)",
            (user_response,),
        )

        # insert a row into the message_categorys_associations table for each valid label in labels with the message_id of the constituent_email
        labels = labels.split(", ")
        for label in labels:
            label_exists = db_cursor.execute(
                "SELECT * FROM radmap_frog12.message_categorys WHERE message_category_name = %s",
                (label,),
            )
            label_exists = db_cursor.fetchall()
            if label_exists:
                db_cursor.execute(
                    "INSERT INTO message_category_associations (message_id, message_category_id) VALUES ((SELECT id FROM messages WHERE body = %s), (SELECT id FROM message_categorys WHERE message_category_name = %s))",
                    (constituent_email, label),
                )

        db_connection.commit()

        return "Data successfully saved to database"

    except Exception as e:
        print(e)
        db_connection.rollback()
        return "Error saving data to database"


# read auth from env vars
auth_username = os.environ.get("AUTH_USERNAME")
auth_password = os.environ.get("AUTH_PASSWORD")

# Define your username and password pairs
auth = [(auth_username, auth_password)]

# Start building the Gradio interface
# Start building the Gradio interface with two columns
with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown("## Email Classification and Response Tracking")

    with gr.Row():
        with gr.Column():
            email_labels_input = gr.Markdown(
                "## Valid Email Labels\n ### " + ", ".join(potential_labels),
            )

            original_email_input = gr.TextArea(
                placeholder="Enter the original email sent by you",
                label="Your Original Email",
            )

            spacer1 = gr.Label(visible=False)

            constituent_response_input = gr.TextArea(
                placeholder="Enter the constituent's response",
                label="Constituent's Response",
                lines=15,
            )

            classify_button = gr.Button("Classify Email")

        with gr.Column():
            classification_output = gr.TextArea(
                label="Current Email Labels",
                lines=1,
                interactive=True,
            )

            spacer2 = gr.Label(visible=False)

            user_response_input = gr.TextArea(
                placeholder="Enter your response to the constituent",
                label="Your Response",
                lines=25,
            )

            save_button = gr.Button("Save Data")
            save_output = gr.Label(label="Backend Response")

    # Define button actions
    classify_button.click(
        fn=classify_email,
        inputs=constituent_response_input,
        outputs=classification_output,
    )

    save_button.click(
        fn=save_data,
        inputs=[
            original_email_input,
            constituent_response_input,
            classification_output,
            user_response_input,
        ],
        outputs=save_output,
    )

# Launch the app
app.launch(auth=auth, debug=True)