Spaces:
Sleeping
Sleeping
File size: 8,022 Bytes
50a9c82 655b450 27eb4fe 50a9c82 27eb4fe 50a9c82 2aa7929 50a9c82 27eb4fe 6604630 50a9c82 6604630 50a9c82 655b450 50a9c82 88af45a 50a9c82 0f9c891 655b450 50a9c82 88af45a 6923dbf 88af45a 655b450 88af45a 50a9c82 655b450 50a9c82 655b450 50a9c82 655b450 50a9c82 2409abe 7cb54ea 2409abe 50a9c82 cc9a127 429a28c 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 655b450 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import mysql.connector
import os
# Use a pipeline as a high-level helper
from transformers import pipeline
classifier_model = pipeline(
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1"
)
# get db info from env vars
db_host = os.environ.get("DB_HOST")
db_user = os.environ.get("DB_USER")
db_pass = os.environ.get("DB_PASS")
db_name = os.environ.get("DB_NAME")
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
ORG_ID = 731
potential_labels = []
def get_potential_labels():
# get potential labels from db
global potential_labels
potential_labels = db_cursor.execute(
"SELECT message_category_name FROM radmap_frog12.message_categorys"
)
potential_labels = db_cursor.fetchall()
potential_labels = [label[0] for label in potential_labels]
return potential_labels
potential_labels = get_potential_labels()
# Function to handle the classification
def classify_email(constituent_email):
potential_labels = get_potential_labels()
print("classifying email")
model_out = classifier_model(constituent_email, potential_labels, multi_label=True)
print("classification complete")
top_labels = [
label
for label, score in zip(model_out["labels"], model_out["scores"])
if score > 0.95
]
if top_labels == []:
# Find the index of the highest score
max_score_index = model_out["scores"].index(max(model_out["scores"]))
# Return the label with the highest score
return model_out["labels"][max_score_index]
return ", ".join(top_labels)
def remove_spaces_after_comma(s):
parts = s.split(",")
parts = [part.strip() for part in parts]
return ",".join(parts)
# Function to handle saving data
def save_data(orig_user_email, constituent_email, labels, user_response, current_user):
# save the data to the database
# orig_user_email should have volley 0
# constituent_email should have volley 1
# user_response should have volley 2
# app_id, org_id, and person_id should be 0
# subject should be "Email Classification and Response Tracking"
# body should be the original email
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
if current_user == "Sheryl Springer":
person_id = 11021
elif current_user == "Diane Taylor":
person_id = 11023
elif current_user == "Ann E. Belyea":
person_id = 11025
elif current_user == "Marcelo Mejia":
person_id = 11027
elif current_user == "Rishi Vasudeva":
person_id = 11029
try:
volley = 1
if orig_user_email != "":
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, person_id, orig_user_email, volley),
)
volley = 2
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (345678, %s, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, constituent_email, volley),
)
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, volley) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, person_id, user_response, volley + 1),
)
# insert a row into the message_categorys_associations table for each valid label in labels with the message_id of the constituent_email
# if there is a comma, remove all spaces after the comma
labels = remove_spaces_after_comma(labels)
labels = labels.split(",")
for label in labels:
label_exists = db_cursor.execute(
"SELECT * FROM radmap_frog12.message_categorys WHERE message_category_name = %s",
(label,),
)
label_exists = db_cursor.fetchall()
if label_exists:
message_id = db_cursor.execute(
"SELECT id FROM radmap_frog12.messages WHERE body = %s",
(constituent_email,),
)
message_id = db_cursor.fetchall()
db_cursor.execute(
"INSERT INTO radmap_frog12.message_category_associations (message_id, message_category_id) VALUES (%s, %s)",
(message_id[0][0], label_exists[0][0]),
)
db_connection.commit()
return "Response successfully saved to database"
except Exception as e:
print(e)
db_connection.rollback()
return "Error saving data to database"
# read auth from env vars
auth_username = os.environ.get("AUTH_USERNAME")
auth_password = os.environ.get("AUTH_PASSWORD")
# Define your username and password pairs
auth = [(auth_username, auth_password)]
# Start building the Gradio interface
# Start building the Gradio interface with two columns
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
gr.Markdown("## Campaign Messaging Assistant")
with gr.Row():
with gr.Column():
current_user = gr.Dropdown(
label="Current User",
choices=[
"Sheryl Springer",
"Ann E. Belyea",
"Marcelo Mejia",
"Rishi Vasudeva",
"Diane Taylor",
],
)
email_labels_input = gr.Markdown(
"## Message Category Library\n ### " + ", ".join(potential_labels),
)
original_email_input = gr.TextArea(
placeholder="Enter the original email sent by you",
label="Your Original Email (if any)",
)
spacer1 = gr.Label(visible=False)
constituent_response_input = gr.TextArea(
placeholder="Enter the incoming message",
label="Incoming Message (may be a response to original email)",
lines=15,
)
classify_button = gr.Button("Process Message", variant="primary")
with gr.Column():
classification_output = gr.TextArea(
label="Suggested Message Categories (modify as needed). Separate categories with commas",
lines=1,
interactive=True,
)
spacer2 = gr.Label(visible=False)
user_response_input = gr.TextArea(
placeholder="Enter your response to the constituent",
label="Suggested Response (modify as needed)",
lines=25,
)
save_button = gr.Button("Save Response", variant="primary")
save_output = gr.Label(label="Backend Response")
# Define button actions
classify_button.click(
fn=classify_email,
inputs=constituent_response_input,
outputs=classification_output,
)
save_button.click(
fn=save_data,
inputs=[
original_email_input,
constituent_response_input,
classification_output,
user_response_input,
current_user,
],
outputs=save_output,
)
# Launch the app
app.launch(auth=auth, debug=True)
|